Sure, let's find the gravitational potential energy of the traffic light.
Given the mass of the traffic light:
[tex]\[ m = 16.8 \, \text{kg} \][/tex]
Given the height above the ground:
[tex]\[ h = 5.5 \, \text{m} \][/tex]
Given the acceleration due to gravity:
[tex]\[ g = 10 \, \frac{\text{m}}{\text{s}^2} \][/tex]
We use the formula for gravitational potential energy:
[tex]\[ E_g = mgh \][/tex]
Plugging in the given values:
[tex]\[ E_g = 16.8 \, \text{kg} \times 10 \, \frac{\text{m}}{\text{s}^2} \times 5.5 \, \text{m} \][/tex]
So, the gravitational potential energy [tex]\( E_g \)[/tex] is:
[tex]\[ E_g = 924 \, \text{J} \][/tex]
Therefore, the traffic light has a gravitational potential energy of 924 Joules.