Which expression is equivalent to [tex]$\frac{1}{4}(8-6x+12)$[/tex]?

A. [tex]$\frac{7}{2}x$[/tex]

B. [tex][tex]$-\frac{13}{2}x$[/tex][/tex]

C. [tex]$-6x+14$[/tex]

D. [tex]$-\frac{3}{2}x+5$[/tex]



Answer :

To determine which of the given choices is equivalent to the expression [tex]\(\frac{1}{4}(8 - 6x + 12)\)[/tex], we need to simplify the expression step by step.

1. Combine like terms inside the parentheses if possible:
[tex]\[ 8 - 6x + 12 \][/tex]
Combine [tex]\(8\)[/tex] and [tex]\(12\)[/tex]:
[tex]\[ 8 + 12 = 20 \][/tex]
Thus, the expression inside the parentheses simplifies to:
[tex]\[ 20 - 6x \][/tex]

2. Distribute [tex]\(\frac{1}{4}\)[/tex] to each term inside the parentheses:
[tex]\[ \frac{1}{4}(20 - 6x) \][/tex]
Distribute [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{1}{4} \cdot 20 - \frac{1}{4} \cdot 6x \][/tex]

3. Perform the multiplications:
[tex]\[ \frac{1}{4} \cdot 20 = \frac{20}{4} = 5 \][/tex]
and
[tex]\[ \frac{1}{4} \cdot 6x = \frac{6x}{4} = \frac{3x}{2} \][/tex]

4. Combine the simplified terms:
[tex]\[ 5 - \frac{3x}{2} \][/tex]

5. Match the simplified expression with the choices given:

[tex]\[ 5 - \frac{3x}{2} \][/tex]

This matches with choice D, which is:

[tex]\[ D. -\frac{3}{2} x + 5 \][/tex]

Thus, the expression equivalent to [tex]\(\frac{1}{4}(8 - 6x + 12)\)[/tex] is [tex]\(\boxed{-\frac{3}{2} x + 5}\)[/tex].