Compute all first-order partial derivatives of the given function:

[tex]\[ f(x, y) = 2x(y - 3x) - 4y \][/tex]



Answer :

Let's compute the first-order partial derivatives of the given function [tex]\( f(x, y) = 2x(y - 3x) - 4y \)[/tex]. A partial derivative of a function with respect to a variable treats all other variables as constants.

### Step 1: Compute [tex]\(\frac{\partial f}{\partial x}\)[/tex]
To find the partial derivative with respect to [tex]\(x\)[/tex], we need to differentiate [tex]\( f(x, y) \)[/tex] holding [tex]\( y \)[/tex] constant.

The original function is:
[tex]\[ f(x, y) = 2x(y - 3x) - 4y \][/tex]

First, expand the function:
[tex]\[ f(x, y) = 2x \cdot y - 2x \cdot 3x - 4y \][/tex]
[tex]\[ f(x, y) = 2xy - 6x^2 - 4y \][/tex]

Now, differentiate with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (2xy - 6x^2 - 4y) \][/tex]

The derivative of each term is:
[tex]\[ \frac{\partial}{\partial x} (2xy) = 2y \][/tex]
[tex]\[ \frac{\partial}{\partial x} (-6x^2) = -12x \][/tex]
[tex]\[ \frac{\partial}{\partial x} (-4y) = 0 \][/tex]

So, combining these results:
[tex]\[ \frac{\partial f}{\partial x} = 2y - 12x \][/tex]

### Step 2: Compute [tex]\(\frac{\partial f}{\partial y}\)[/tex]
To find the partial derivative with respect to [tex]\( y \)[/tex], we need to differentiate [tex]\( f(x, y) \)[/tex] holding [tex]\( x \)[/tex] constant.

Using the expanded form:
[tex]\[ f(x, y) = 2xy - 6x^2 - 4y \][/tex]

Differentiate with respect to [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (2xy - 6x^2 - 4y) \][/tex]

The derivative of each term is:
[tex]\[ \frac{\partial}{\partial y} (2xy) = 2x \][/tex]
[tex]\[ \frac{\partial}{\partial y} (-6x^2) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} (-4y) = -4 \][/tex]

So, combining these results:
[tex]\[ \frac{\partial f}{\partial y} = 2x - 4 \][/tex]

### Summary
Thus, the first-order partial derivatives of the function [tex]\( f(x, y) = 2x(y - 3x) - 4y \)[/tex] are:
[tex]\[ \frac{\partial f}{\partial x} = -12x + 2y \][/tex]
[tex]\[ \frac{\partial f}{\partial y} = 2x - 4 \][/tex]

These results simplify to:
[tex]\[ \frac{\partial f}{\partial x} = -12x + 2y \][/tex]
[tex]\[ \frac{\partial f}{\partial y} = 2x - 4 \][/tex]