Answered

A 70 kg cyclist bikes at a speed of [tex]$7 \, \text{m/s}$[/tex]. How much kinetic energy does the cyclist have?

Remember: [tex]$E_{K} = \frac{mv^2}{2}$[/tex]

[tex]E_{K} = [?] \, \text{J}[/tex]



Answer :

To determine the kinetic energy of a cyclist with a mass of 70 kg biking at a speed of 7 m/s, we will use the formula for kinetic energy:

[tex]\[ E_k = \frac{1}{2} mv^2 \][/tex]

Here, [tex]\( m \)[/tex] represents the mass of the cyclist, and [tex]\( v \)[/tex] represents the velocity. Let's break this down step-by-step:

1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) = 70 kg
- Velocity ([tex]\( v \)[/tex]) = 7 m/s

2. Insert these values into the kinetic energy formula:
[tex]\[ E_k = \frac{1}{2} \times 70 \,\text{kg} \times (7 \,\text{m/s})^2 \][/tex]

3. Calculate the square of the velocity:
[tex]\[ v^2 = (7 \,\text{m/s})^2 = 49 \,\text{m}^2/\text{s}^2 \][/tex]

4. Multiply the mass by the squared velocity:
[tex]\[ m \times v^2 = 70 \,\text{kg} \times 49 \,\text{m}^2/\text{s}^2 = 3430 \,\text{kg} \cdot \text{m}^2/\text{s}^2 \][/tex]

5. Finally, divide by 2 to find the kinetic energy:
[tex]\[ E_k = \frac{3430 \,\text{kg} \cdot \text{m}^2/\text{s}^2}{2} = 1715 \,\text{J} \][/tex]

Therefore, the kinetic energy of the cyclist is [tex]\( 1715 \)[/tex] Joules.