Answered

Find [tex]$P(C \mid Y)$[/tex] from the information in the table.

\begin{tabular}{|c|c|c|c|c|}
\hline & [tex]$X$[/tex] & [tex]$Y$[/tex] & [tex]$Z$[/tex] & Total \\
\hline [tex]$A$[/tex] & 32 & 10 & 28 & 70 \\
\hline [tex]$B$[/tex] & 6 & 5 & 25 & 36 \\
\hline [tex]$C$[/tex] & 18 & 15 & 7 & 40 \\
\hline Total & 56 & 30 & 60 & 146 \\
\hline
\end{tabular}

To the nearest tenth, what is the value of [tex]$P(C \mid Y)$[/tex]?

A. 0.4
B. 0.5
C. 0.7
D. 0.8



Answer :

To find [tex]\( P(C \mid Y) \)[/tex], we need to determine the probability of [tex]\( C \)[/tex] given [tex]\( Y \)[/tex]. This probability can be calculated using the formula for conditional probability:

[tex]\[ P(C \mid Y) = \frac{P(C \cap Y)}{P(Y)} \][/tex]

Here, [tex]\( P(C \cap Y) \)[/tex] is the probability of both [tex]\( C \)[/tex] and [tex]\( Y \)[/tex] occurring together, and [tex]\( P(Y) \)[/tex] is the probability of [tex]\( Y \)[/tex] occurring.

From the given table:

- The number of occurrences of [tex]\( C \)[/tex] and [tex]\( Y \)[/tex] together is 15.
- The total number of occurrences of [tex]\( Y \)[/tex] is 30.

Thus, we have:

[tex]\[ P(C \mid Y) = \frac{\text{Number of occurrences of } C \text{ and } Y}{\text{Total number of occurrences of } Y} = \frac{15}{30} = 0.5 \][/tex]

To the nearest tenth, the value of [tex]\( P(C \mid Y) \)[/tex] is [tex]\( 0.5 \)[/tex].

Therefore, the correct answer is [tex]\( 0.5 \)[/tex].