Which of the following is equivalent to the quotient below?

[tex]\frac{\sqrt{140}}{\sqrt{8}}[/tex]

A. [tex]\sqrt{70}[/tex]

B. [tex]\frac{\sqrt{35}}{2}[/tex]

C. [tex]\sqrt{35}[/tex]

D. [tex]\frac{\sqrt{70}}{2}[/tex]



Answer :

To determine which of the provided options is equivalent to the quotient [tex]\(\frac{\sqrt{140}}{\sqrt{8}}\)[/tex], let's first simplify the expression step-by-step.

1. Combine the square roots:
[tex]\[ \frac{\sqrt{140}}{\sqrt{8}} = \sqrt{\frac{140}{8}} \][/tex]

2. Simplify the fraction inside the square root:
[tex]\[ \frac{140}{8} \text{ simplifies to } \frac{140 \div 4}{8 \div 4} = \frac{35}{2} \][/tex]

3. Rewrite the simplified expression:
[tex]\[ \frac{\sqrt{140}}{\sqrt{8}} = \sqrt{\frac{35}{2}} \][/tex]

4. Rationalize the denominator (if needed):
We can split the square root of a fraction into the square root of the numerator and the denominator:
[tex]\[ \sqrt{\frac{35}{2}} = \frac{\sqrt{35}}{\sqrt{2}} \][/tex]

5. Simplify further:
[tex]\[ \frac{\sqrt{35}}{\sqrt{2}} = \frac{\sqrt{35}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{35} \times \sqrt{2}}{2} = \frac{\sqrt{70}}{2} \][/tex]

Thus, we have simplified the original expression [tex]\(\frac{\sqrt{140}}{\sqrt{8}}\)[/tex] to [tex]\(\frac{\sqrt{70}}{2}\)[/tex].

Given the provided options:
- A. [tex]\(\sqrt{70}\)[/tex]
- B. [tex]\(\frac{\sqrt{35}}{2}\)[/tex]
- C. [tex]\(\sqrt{35}\)[/tex]
- D. [tex]\(\frac{\sqrt{70}}{2}\)[/tex]

The correct option that matches our simplified expression [tex]\(\frac{\sqrt{70}}{2}\)[/tex] is D.