Answered

Select the correct answer.

Use the given formula to find the sum of the series.

[tex]\[ S_n=\frac{a_1\left(1-r^n\right)}{1-r} \][/tex]

What is the sum of the first 6 terms of this geometric series?

[tex]\[ 6 + (-18) + 54 + (-162) \ldots \][/tex]

A. [tex]\(-1,092\)[/tex]
B. [tex]\(-4,368\)[/tex]
C. [tex]\(2,184\)[/tex]
D. [tex]\(1,456\)[/tex]



Answer :

To find the sum of the first 6 terms of the given geometric series [tex]\(6 + (-18) + 54 + (-162) + \ldots\)[/tex], we will use the formula for the sum of the first [tex]\(n\)[/tex] terms of a geometric series:

[tex]\[ S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r} \][/tex]

where:
- [tex]\(a_1\)[/tex] is the first term of the series
- [tex]\(r\)[/tex] is the common ratio
- [tex]\(n\)[/tex] is the number of terms

Let's identify the values from the series:
1. The first term, [tex]\(a_1\)[/tex], is [tex]\(6\)[/tex].
2. The common ratio, [tex]\(r\)[/tex], can be found by dividing the second term by the first term:
[tex]\[ r = \frac{-18}{6} = -3 \][/tex]
3. The number of terms, [tex]\(n\)[/tex], is [tex]\(6\)[/tex].

Plug these values into the formula to compute the sum:

[tex]\[ S_6 = \frac{6 \left(1 - (-3)^6\right)}{1 - (-3)} \][/tex]

Calculate [tex]\((-3)^6\)[/tex]:
[tex]\[ (-3)^6 = (-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3) = 729 \][/tex]

Substitute this back into the formula:
[tex]\[ S_6 = \frac{6 \left(1 - 729\right)}{1 + 3} \][/tex]

Simplify inside the parentheses:
[tex]\[ 1 - 729 = -728 \][/tex]

Then the formula becomes:
[tex]\[ S_6 = \frac{6 \times (-728)}{4} \][/tex]

Multiply and divide:
[tex]\[ S_6 = \frac{-4368}{4} = -1092 \][/tex]

Thus, the sum of the first 6 terms of the geometric series is [tex]\(-1092\)[/tex].

Therefore, the correct answer is:

A. [tex]\(-1,092\)[/tex]