Chad decides to try designing with regular polygons to see how the areas compare. Use GeoGebra to draw the figures and find the areas. Then complete the table by typing the correct answer in each box. Use numerals instead of words. Round values to the nearest hundredth.

\begin{tabular}{|c|c|c|c|c|}
\hline
Regular Figure & Number of Sides & Side Length & Perimeter & Area \\
\hline
quadrilateral & 4 & 5 & units & units [tex]$^2$[/tex] \\
\hline
pentagon & 5 & 4 & units & units [tex]$^2$[/tex] \\
\hline
decagon & 10 & 2 & units & units [tex]$^2$[/tex] \\
\hline
icosagon & 20 & 1 & units & units [tex]$^2$[/tex] \\
\hline
\end{tabular}



Answer :

Let's go step-by-step to fill out the table with the given conditions:

### Quadrilateral:
- Number of Sides: 4
- Side Length: 5 units

Calculations:
- Perimeter: To find the perimeter, we multiply the number of sides by the side length.
[tex]\[ Perimeter = 4 \times 5 = 20 \text{ units} \][/tex]

- Area: The area of a regular quadrilateral (square) is calculated by squaring the side length.
[tex]\[ Area = 5^2 = 25.0 \text{ units}^2 \][/tex]

### Pentagon:
- Number of Sides: 5
- Side Length: 4 units

Calculations:
- Perimeter:
[tex]\[ Perimeter = 5 \times 4 = 20 \text{ units} \][/tex]

- Area:
[tex]\[ Area \approx 27.53 \text{ units}^2 \][/tex]

### Decagon:
- Number of Sides: 10
- Side Length: 2 units

Calculations:
- Perimeter:
[tex]\[ Perimeter = 10 \times 2 = 20 \text{ units} \][/tex]

- Area:
[tex]\[ Area \approx 30.78 \text{ units}^2 \][/tex]

### Icosagon:
- Number of Sides: 20
- Side Length: 1 unit

Calculations:
- Perimeter:
[tex]\[ Perimeter = 20 \times 1 = 20 \text{ units} \][/tex]

- Area:
[tex]\[ Area \approx 31.57 \text{ units}^2 \][/tex]

Given these calculations, we can complete the table as follows:

\begin{tabular}{|c|c|c|c|c|}
\hline Regular Figure & \begin{tabular}{l}
Number of \\
Sides
\end{tabular} & \begin{tabular}{l}
Side \\
Length
\end{tabular} & Perimeter & Area \\
\hline quadrilateral & 4 & 5 & 20 units & 25.0 units[tex]$^2$[/tex] \\
\hline pentagon & 5 & 4 & 20 units & 27.53 units[tex]$^2$[/tex] \\
\hline decagon & 10 & 2 & 20 units & 30.78 units[tex]$^2$[/tex] \\
\hline icosagon & 20 & 1 & 20 units & 31.57 units[tex]$^2$[/tex] \\
\hline
\end{tabular}