Answer :
Sure, let's solve the system of linear equations step-by-step:
[tex]\[ \left\{\begin{array}{l} 3x + 5y = -14 \\ x - y = 6 \end{array}\right. \][/tex]
### Step 1: Solving for [tex]\(x\)[/tex] from the second equation
First, we'll isolate [tex]\(x\)[/tex] in the second equation:
[tex]\[ x - y = 6 \][/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ x = y + 6 \][/tex]
### Step 2: Substituting [tex]\(x\)[/tex] into the first equation
Next, we'll substitute [tex]\(x = y + 6\)[/tex] into the first equation:
[tex]\[ 3x + 5y = -14 \][/tex]
Substitute [tex]\(x\)[/tex]:
[tex]\[ 3(y + 6) + 5y = -14 \][/tex]
### Step 3: Simplifying and solving for [tex]\(y\)[/tex]
Distribute the 3:
[tex]\[ 3y + 18 + 5y = -14 \][/tex]
Combine like terms:
[tex]\[ 8y + 18 = -14 \][/tex]
Subtract 18 from both sides:
[tex]\[ 8y = -14 - 18 \][/tex]
[tex]\[ 8y = -32 \][/tex]
Divide both sides by 8:
[tex]\[ y = -4 \][/tex]
### Step 4: Solving for [tex]\(x\)[/tex]
Now that we have [tex]\(y = -4\)[/tex], we can find [tex]\(x\)[/tex] using the equation [tex]\(x = y + 6\)[/tex]:
[tex]\[ x = -4 + 6 \][/tex]
[tex]\[ x = 2 \][/tex]
### Solution
The solution to the system of equations is:
[tex]\[ x = 2, \quad y = -4 \][/tex]
Thus, the system of equations:
[tex]\[ \left\{\begin{array}{l} 3 x + 5 y = -14 \\ x - y = 6 \end{array}\right. \][/tex]
is satisfied by [tex]\(x = 2\)[/tex] and [tex]\(y = -4\)[/tex].
[tex]\[ \left\{\begin{array}{l} 3x + 5y = -14 \\ x - y = 6 \end{array}\right. \][/tex]
### Step 1: Solving for [tex]\(x\)[/tex] from the second equation
First, we'll isolate [tex]\(x\)[/tex] in the second equation:
[tex]\[ x - y = 6 \][/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ x = y + 6 \][/tex]
### Step 2: Substituting [tex]\(x\)[/tex] into the first equation
Next, we'll substitute [tex]\(x = y + 6\)[/tex] into the first equation:
[tex]\[ 3x + 5y = -14 \][/tex]
Substitute [tex]\(x\)[/tex]:
[tex]\[ 3(y + 6) + 5y = -14 \][/tex]
### Step 3: Simplifying and solving for [tex]\(y\)[/tex]
Distribute the 3:
[tex]\[ 3y + 18 + 5y = -14 \][/tex]
Combine like terms:
[tex]\[ 8y + 18 = -14 \][/tex]
Subtract 18 from both sides:
[tex]\[ 8y = -14 - 18 \][/tex]
[tex]\[ 8y = -32 \][/tex]
Divide both sides by 8:
[tex]\[ y = -4 \][/tex]
### Step 4: Solving for [tex]\(x\)[/tex]
Now that we have [tex]\(y = -4\)[/tex], we can find [tex]\(x\)[/tex] using the equation [tex]\(x = y + 6\)[/tex]:
[tex]\[ x = -4 + 6 \][/tex]
[tex]\[ x = 2 \][/tex]
### Solution
The solution to the system of equations is:
[tex]\[ x = 2, \quad y = -4 \][/tex]
Thus, the system of equations:
[tex]\[ \left\{\begin{array}{l} 3 x + 5 y = -14 \\ x - y = 6 \end{array}\right. \][/tex]
is satisfied by [tex]\(x = 2\)[/tex] and [tex]\(y = -4\)[/tex].