Answered

Select the correct answer.

Consider this absolute value function:
[tex]f(x) = |x+3|[/tex]

If function [tex]f[/tex] is written as a piecewise function, which piece will it include?

A. [tex]x + 3, \ x \geq -3[/tex]
B. [tex]-x + 3, \ x \ \textless \ -3[/tex]
C. [tex]-x - 3, \ x \ \textless \ 3[/tex]
D. [tex]x + 3, \ x \geq 3[/tex]



Answer :

To determine the correct piece of the piecewise function for [tex]\( f(x) = |x+3| \)[/tex], we need to express the absolute value function without the absolute value sign.

We can write the absolute value function as a piecewise function based on the definition of absolute value:

[tex]\[ |x+3| = \begin{cases} x + 3 & \text{if } x + 3 \geq 0 \\ -(x + 3) & \text{if } x + 3 < 0 \end{cases} \][/tex]

We simplify the conditions:
1. [tex]\(x + 3 \geq 0 \)[/tex] simplifies to [tex]\( x \geq -3 \)[/tex].
2. [tex]\(x + 3 < 0\)[/tex] simplifies to [tex]\( x < -3 \)[/tex].

This gives us the piecewise function:

[tex]\[ f(x) = \begin{cases} x + 3 & \text{if } x \geq -3 \\ -(x + 3) & \text{if } x < -3 \end{cases} \][/tex]

Now, let's identify which of the provided choices matches these pieces:

A. [tex]\(x + 3, x \geq -3\)[/tex]

B. [tex]\(-x + 3, x < -3\)[/tex]

C. [tex]\(-x - 3, x < 3\)[/tex]

D. [tex]\(x + 3, x \geq 3\)[/tex]

By comparing, we see:
- Choice A: [tex]\(x + 3, x \geq -3\)[/tex] matches our first condition.
- Choice B: [tex]\(-x + 3, x < -3\)[/tex] does not match any of our conditions.
- Choice C: [tex]\(-x - 3, x < 3\)[/tex] does not match any of our conditions.
- Choice D: [tex]\(x + 3, x \geq 3\)[/tex] does not match any of our conditions.

Therefore, the correct piece that is included in the piecewise function for [tex]\( f(x)=|x+3| \)[/tex] is:

\[
\boxed{A. \, x + 3, x \geq -3}