Find [tex]-\sqrt{\frac{100}{81}}[/tex].

A. [tex]-\frac{10}{9}[/tex]
B. [tex]\frac{10}{9}[/tex]
C. [tex]-\frac{9}{10}[/tex]
D. The square root is not a real number.



Answer :

Let's solve the problem step by step:

1. Simplify the Fraction Inside the Square Root:
We begin with the expression inside the square root:
[tex]\[ \frac{100}{81} \][/tex]

2. Calculate the Square Root of the Fraction:
Next, we find the square root of the fraction. Finding the square root of a fraction involves taking the square root of the numerator and the square root of the denominator separately:
[tex]\[ \sqrt{\frac{100}{81}} = \frac{\sqrt{100}}{\sqrt{81}} \][/tex]
Simplifying the square roots:
[tex]\[ \sqrt{100} = 10 \][/tex]
[tex]\[ \sqrt{81} = 9 \][/tex]
Therefore:
[tex]\[ \sqrt{\frac{100}{81}} = \frac{10}{9} \][/tex]

3. Negate the Square Root:
To find [tex]\(-\sqrt{\frac{100}{81}}\)[/tex], we simply negate the result obtained from the square root calculation:
[tex]\[ -\sqrt{\frac{100}{81}} = -\frac{10}{9} \][/tex]

4. Select the Correct Answer:
Comparing our result with the given options:
[tex]\[ -\frac{10}{9} \][/tex]
We see that option a. matches our result.

Thus, the correct answer is:

a. [tex]\(-10 / 9\)[/tex]