For each expression, select all equivalent expressions from the list.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
& $5x + 10$
& $5(x + 2)$
& $5 \cdot x + 5 \cdot 2$
& $15x$
& $5(2x + 1)$ \\
\hline
(b)
& $15 + 16y - 7 - y$
& $8y + 15y$
& $8y + 15$
& $15 + 8y$
& $15y + 8$ \\
\hline
\end{tabular}
\][/tex]



Answer :

Alright, let's evaluate each expression and determine which expressions are equivalent.

First, let's look at the expression:
[tex]\[ 5x + 10 \][/tex]

We need to identify whether any of the following expressions are equivalent:
- [tex]\( 5(x + 2) \)[/tex]
- [tex]\( 5 \cdot x + 5 \cdot 2 \)[/tex]
- [tex]\( 15x \)[/tex]
- [tex]\( 5(2x + 1) \)[/tex]

### Evaluation of Expressions for [tex]\(5x + 10\)[/tex]:

1. Expression [tex]\(5(x + 2)\)[/tex]:
Applying the distributive property:
[tex]\[ 5(x + 2) = 5 \cdot x + 5 \cdot 2 = 5x + 10 \][/tex]
This is equivalent to [tex]\(5x + 10\)[/tex].

2. Expression [tex]\(5 \cdot x + 5 \cdot 2\)[/tex]:
Simplifying:
[tex]\[ 5 \cdot x + 5 \cdot 2 = 5x + 10 \][/tex]
This is also equivalent to [tex]\(5x + 10\)[/tex].

3. Expression [tex]\(15x\)[/tex]:
This expression is already in its simplest form and does not simplify to [tex]\(5x + 10\)[/tex].

4. Expression [tex]\(5(2x + 1)\)[/tex]:
Applying the distributive property:
[tex]\[ 5(2x + 1) = 5 \cdot 2x + 5 \cdot 1 = 10x + 5 \][/tex]
This is not equivalent to [tex]\(5x + 10\)[/tex].

Based on the evaluations, the equivalent expressions to [tex]\(5x + 10\)[/tex] are:
- [tex]\( 5(x + 2) \)[/tex]
- [tex]\( 5 \cdot x + 5 \cdot 2 \)[/tex]

Next, let’s consider the expression:
[tex]\[ 15 + 16y - 7 - y \][/tex]

We need to identify whether any of the following expressions are equivalent:
- [tex]\( 8y + 15y \)[/tex]
- [tex]\( 8y + 15 \)[/tex]
- [tex]\( 15 + 8y \)[/tex]
- [tex]\( 15y + 8 \)[/tex]

### Evaluation of Expressions for [tex]\(15 + 16y - 7 - y\)[/tex]:

First, simplify the original expression:
[tex]\[ 15 + 16y - 7 - y = 15 + 15y - 7 \][/tex]
Combine like terms:
[tex]\[ 15 - 7 + 15y = 8 + 15y \][/tex]

1. Expression [tex]\(8y + 15y\)[/tex]:
Simplifying:
[tex]\[ 8y + 15y = 23y \][/tex]
This is not equivalent to [tex]\(8 + 15y\)[/tex].

2. Expression [tex]\(8y + 15\)[/tex]:
This remains as [tex]\(8y + 15\)[/tex], which is not equivalent to [tex]\(8 + 15y\)[/tex].

3. Expression [tex]\(15 + 8y\)[/tex]:
Rearrange:
[tex]\[ 15 + 8y = 8y + 15 \][/tex]
This is equivalent to [tex]\(8 + 15y\)[/tex].

4. Expression [tex]\(15y + 8\)[/tex]:
This is already in its simplest form and is equivalent to [tex]\(8 + 15y\)[/tex].

Based on the evaluations, the equivalent expressions to [tex]\(15 + 16y - 7 - y\)[/tex] are:
- [tex]\(15 + 8y\)[/tex]
- [tex]\(15y + 8\)[/tex]

To summarize:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline & 5(x+2) & 5 \cdot x + 5 \cdot 2 & 15x & 5(2x+1) \\ \hline 5x + 10 & \checkmark & \checkmark & & \\ \hline (b) & 8y + 15y & 8y + 15 & 15 + 8y & 15y + 8 \\ \hline 15 + 16y - 7 - y & & & \checkmark & \checkmark \\ \hline \end{array} \][/tex]