If the translation [tex]T[/tex] maps point [tex]A(7,2)[/tex] onto point [tex]A^{\prime}(5,5)[/tex], what is the translation [tex]T[/tex]?

A. [tex]T_{\ \textless \ 3,6\ \textgreater \ }[/tex]
B. [tex]T_{\langle 2,4 \rangle}[/tex]
C. [tex]T_{\ \textless \ -2,6\ \textgreater \ }[/tex]
D. [tex]T_{\ \textless \ -2,3\ \textgreater \ }[/tex]



Answer :

To determine the translation vector [tex]\(T\)[/tex] that maps point [tex]\(A(7,2)\)[/tex] onto point [tex]\(A^{\prime}(5,5)\)[/tex], let's follow a step-by-step approach:

1. Identify the initial coordinates of point [tex]\(A\)[/tex]:
[tex]\[ A_x = 7, \quad A_y = 2 \][/tex]

2. Identify the coordinates of the translated point [tex]\(A'\)[/tex]:
[tex]\[ A'_x = 5, \quad A'_y = 5 \][/tex]

3. Calculate the translation vector components [tex]\(T_x\)[/tex] and [tex]\(T_y\)[/tex]:
- The x-component of the translation vector is the difference between the x-coordinates of [tex]\(A'\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ T_x = A'_x - A_x = 5 - 7 = -2 \][/tex]
- The y-component of the translation vector is the difference between the y-coordinates of [tex]\(A'\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ T_y = A'_y - A_y = 5 - 2 = 3 \][/tex]

4. Combine these components to write the translation vector [tex]\(T\)[/tex]:
[tex]\[ T = \langle -2, 3 \rangle \][/tex]

Thus, the correct translation vector that maps point [tex]\(A(7,2)\)[/tex] to point [tex]\(A^{\prime}(5,5)\)[/tex] is:
[tex]\[ \boxed{T_{\langle -2, 3 \rangle}} \][/tex]

Therefore, the correct answer is:
D. [tex]\(T_{<-2, 3>}\)[/tex]