The chart shows the times and accelerations for three drivers.

\begin{tabular}{|l|l|l|}
\hline
Driver & Acceleration & Time \\
\hline
Kira & [tex]$5.2 \, \text{m/s}^2$[/tex] & 6.9 \, \text{sec} \\
\hline
Dustin & [tex]$8.3 \, \text{m/s}^2$[/tex] & 3 \, \text{sec} \\
\hline
Diego & [tex]$6.5 \, \text{m/s}^2$[/tex] & 4.2 \, \text{sec} \\
\hline
\end{tabular}

Which lists them from greatest to lowest change in velocity?

A. Dustin [tex]$\rightarrow$[/tex] Diego [tex]$\rightarrow$[/tex] Kira

B. Dustin [tex]$\rightarrow$[/tex] Kira [tex]$\rightarrow$[/tex] Diego

C. Kira [tex]$\rightarrow$[/tex] Dustin [tex]$\rightarrow$[/tex] Diego

D. Kira [tex]$\rightarrow$[/tex] Diego [tex]$\rightarrow$[/tex] Dustin



Answer :

To determine the order of drivers based on their change in velocity from greatest to lowest, we need to calculate the change in velocity ([tex]\( \Delta v \)[/tex]) for each driver. The change in velocity is given by the formula:

[tex]\[ \Delta v = a \times t \][/tex]

where [tex]\( a \)[/tex] is the acceleration and [tex]\( t \)[/tex] is the time.

Let's calculate [tex]\( \Delta v \)[/tex] for each driver:

1. Kira:
- Acceleration: [tex]\( 5.2 \, m/s^2 \)[/tex]
- Time: [tex]\( 6.9 \, s \)[/tex]
- Change in velocity: [tex]\( \Delta v_{\text{Kira}} = 5.2 \times 6.9 = 35.88 \, m/s \)[/tex]

2. Dustin:
- Acceleration: [tex]\( 8.3 \, m/s^2 \)[/tex]
- Time: [tex]\( 3 \, s \)[/tex]
- Change in velocity: [tex]\( \Delta v_{\text{Dustin}} = 8.3 \times 3 = 24.9 \, m/s \)[/tex]

3. Diego:
- Acceleration: [tex]\( 6.5 \, m/s^2 \)[/tex]
- Time: [tex]\( 4.2 \, s \)[/tex]
- Change in velocity: [tex]\( \Delta v_{\text{Diego}} = 6.5 \times 4.2 = 27.3 \, m/s \)[/tex]

Now, we list the changes in velocity in descending order:

- Kira: [tex]\( 35.88 \, m/s \)[/tex]
- Diego: [tex]\( 27.3 \, m/s \)[/tex]
- Dustin: [tex]\( 24.9 \, m/s \)[/tex]

So, the order from greatest to lowest change in velocity is:

Kira → Diego → Dustin

Hence, the correct listing from greatest to lowest change in velocity is:

[tex]\[ \text{Kira} \rightarrow \text{Diego} \rightarrow \text{Dustin} \][/tex]