Complete the following:

[tex]\[ -4^4 \][/tex]
[tex]\[ -4^{11} \][/tex]
[tex]\[ 4^{11} \][/tex]
[tex]\[ -16^{11} \][/tex]

[tex]\[ \frac{5^9}{5^3} = 5^a \][/tex]

[tex]\[ a = \square \][/tex]



Answer :

Certainly! Let's break down and solve the given problem step-by-step.

We are given the expression:
[tex]\[ \frac{5^9}{5^3} \][/tex]
and we need to simplify this expression to find the value of [tex]\( a \)[/tex] in the equation:
[tex]\[ 5^a \][/tex]

### Step-by-Step Solution:

1. Understanding the Properties of Exponents:
The expression can be simplified using the properties of exponents. One useful property is:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]
This property states that when you divide two exponents with the same base, you subtract the exponent in the denominator from the exponent in the numerator.

2. Applying the Property:
Here, the base is 5, and we have the exponents 9 and 3. Applying the property:
[tex]\[ \frac{5^9}{5^3} = 5^{9-3} \][/tex]

3. Performing the Subtraction:
Calculate the exponent:
[tex]\[ 9 - 3 = 6 \][/tex]

4. Writing the Simplified Expression:
The simplified expression for [tex]\(\frac{5^9}{5^3}\)[/tex] is:
[tex]\[ 5^6 \][/tex]

5. Identifying [tex]\( a \)[/tex]:
Comparing this with [tex]\(5^a\)[/tex]:
[tex]\[ 5^a = 5^6 \][/tex]
Therefore, [tex]\( a \)[/tex] is:
[tex]\[ a = 6 \][/tex]

### Conclusion:

The value of [tex]\( a \)[/tex] is [tex]\( 6 \)[/tex]. So, we can complete the expression as:

[tex]\[ a = 6 \][/tex]