\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & -8 \\
\hline
-1 & 0 \\
\hline
0 & 0 \\
\hline
1 & -2 \\
\hline
2 & 0 \\
\hline
3 & 12 \\
\hline
\end{tabular}

Which lists all of the [tex]$y$[/tex]-intercepts of the continuous function in the table?

A. [tex]$(0,0)$[/tex]

B. [tex]$(-1,0),(2,0)$[/tex]

C. [tex]$(-1,0),(0,0)$[/tex]

D. [tex]$(-1,0),(0,0),(2,0)$[/tex]



Answer :

To determine the [tex]\( y \)[/tex]-intercepts of the function given in the table, we need to identify the points where the function value [tex]\( f(x) = 0 \)[/tex]. The function values are essentially the [tex]\( y \)[/tex]-coordinates, and the y-intercept occurs whenever the function crosses the y-axis, i.e., [tex]\( f(x) = 0 \)[/tex].

From the given data:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & -8 \\ \hline -1 & 0 \\ \hline 0 & 0 \\ \hline 1 & -2 \\ \hline 2 & 0 \\ \hline 3 & 12 \\ \hline \end{array} \][/tex]

Let's go through the table step-by-step and identify the points where [tex]\( f(x) = 0 \)[/tex]:

1. When [tex]\( x = -2 \)[/tex], [tex]\( f(x) = -8 \)[/tex] (not 0).
2. When [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 0 \)[/tex] (this is a y-intercept).
3. When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 0 \)[/tex] (this is a y-intercept).
4. When [tex]\( x = 1 \)[/tex], [tex]\( f(x) = -2 \)[/tex] (not 0).
5. When [tex]\( x = 2 \)[/tex], [tex]\( f(x) = 0 \)[/tex] (this is a y-intercept).
6. When [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 12 \)[/tex] (not 0).

Therefore, the points where the function has [tex]\( f(x) = 0 \)[/tex] are:

[tex]\[ (-1, 0), (0, 0), (2, 0) \][/tex]

So, the list of all [tex]\( y \)[/tex]-intercepts of the function is:
[tex]\[ (-1, 0), (0, 0), (2, 0) \][/tex]

The correct option is:

[tex]\[ (-1,0), (0,0), (2,0) \][/tex]