Evaluate the following expression:

[tex]\[ \left(6^2\right)^7 \][/tex]

A. [tex]\(6^5\)[/tex]
B. [tex]\(6^9\)[/tex]
C. [tex]\(6^{14}\)[/tex]
D. [tex]\(6^{49}\)[/tex]



Answer :

To solve the problem, we need to evaluate the given expression [tex]\(\left(6^2\right)^7\)[/tex] and compare it with the powers of 6 listed in the options.

Start with the given expression:
[tex]\[ \left(6^2\right)^7 \][/tex]

First, let's simplify the exponentiation using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ \left(6^2\right)^7 = 6^{2 \cdot 7} \][/tex]

Calculate the exponent:
[tex]\[ 2 \cdot 7 = 14 \][/tex]

So, the simplified form of [tex]\(\left(6^2\right)^7\)[/tex] is:
[tex]\[ 6^{14} \][/tex]

Thus, the correct expression that matches [tex]\(\left(6^2\right)^7\)[/tex] from the given options is:
[tex]\[ 6^{14} \][/tex]

The numerical value of [tex]\(6^{14}\)[/tex] can be calculated as:
[tex]\[ 6^{14} = 78,364,164,096 \][/tex]

Therefore, the correct and simplified form of the given expression [tex]\(\left(6^2\right)^7\)[/tex] is [tex]\(6^{14}\)[/tex].