\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & -10 \\
\hline
-3 & 0 \\
\hline
-2 & 0 \\
\hline
-1 & -4 \\
\hline
0 & -6 \\
\hline
1 & 0 \\
\hline
\end{tabular}

Which is a [tex]$y$[/tex]-intercept of the continuous function in the table?

A. [tex]$(0, -6)$[/tex]
B. [tex]$(-2, 0)$[/tex]
C. [tex]$(-6, 0)$[/tex]
D. [tex]$(0, -2)$[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the function, we need to determine the point where the function intersects the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].

Given the table:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & -10 \\ \hline -3 & 0 \\ \hline -2 & 0 \\ \hline -1 & -4 \\ \hline 0 & -6 \\ \hline 1 & 0 \\ \hline \end{array} \][/tex]

We look at the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 0 \)[/tex].

From the table, when [tex]\( x = 0 \)[/tex], [tex]\( f(x) = -6 \)[/tex].

Therefore, the [tex]\( y \)[/tex]-intercept of the continuous function in the table is at the point [tex]\((0, -6)\)[/tex].

Among the given options:
- [tex]\( (0, -6) \)[/tex]
- [tex]\( (-2, 0) \)[/tex]
- [tex]\( (-6, 0) \)[/tex]
- [tex]\( (0, -2) \)[/tex]

The correct [tex]\( y \)[/tex]-intercept is [tex]\((0, -6)\)[/tex].