\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 20 \\
\hline
-1 & 0 \\
\hline
0 & -6 \\
\hline
1 & -4 \\
\hline
2 & 0 \\
\hline
3 & 0 \\
\hline
\end{tabular}

Which is an [tex]$x$[/tex]-intercept of the continuous function in the table?

A. [tex]$(-1,0)$[/tex]
B. [tex]$(0,-6)$[/tex]
C. [tex]$(-6,0)$[/tex]
D. [tex]$(0,-1)$[/tex]



Answer :

The x-intercept of a function is the point where the function crosses the x-axis. This means the value of [tex]\( f(x) \)[/tex] must be zero at that point.

Given the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 20 \\ \hline -1 & 0 \\ \hline 0 & -6 \\ \hline 1 & -4 \\ \hline 2 & 0 \\ \hline 3 & 0 \\ \hline \end{tabular} \][/tex]

We need to look for the value of [tex]\( x \)[/tex] where [tex]\( f(x) = 0 \)[/tex].

Let's go through the table entries:
- At [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 20 \)[/tex]
- At [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 0 \)[/tex]
- At [tex]\( x = 0 \)[/tex], [tex]\( f(x) = -6 \)[/tex]
- At [tex]\( x = 1 \)[/tex], [tex]\( f(x) = -4 \)[/tex]
- At [tex]\( x = 2 \)[/tex], [tex]\( f(x) = 0 \)[/tex]
- At [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex]

From this, we see that [tex]\( f(x) = 0 \)[/tex] at the following [tex]\( x \)[/tex]-values:
- [tex]\( x = -1 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = 3 \)[/tex]

Therefore, the correct answer among the given options is the point where [tex]\( x = -1 \)[/tex] because all the provided points should have [tex]\( f(x) = 0 \)[/tex]. The given points are:
- [tex]\((-1, 0)\)[/tex]
- [tex]\((0, -6)\)[/tex]
- [tex]\((-6, 0)\)[/tex]
- [tex]\((0, -1)\)[/tex]

Thus, the [tex]\( x \)[/tex]-intercept of the continuous function is:
[tex]\[ (-1, 0) \][/tex]