Xander reached a final velocity of [tex][tex]$4.5 \, \text{m/s}$[/tex][/tex] in 3.5 seconds.
Finley reached a final velocity of [tex]$3.6 \, \text{m/s}$[/tex] in 4.2 seconds.
Max reached a final velocity of [tex]$7.3 \, \text{m/s}$[/tex] in 1.2 seconds.
They all started at the same location from rest.

Which lists them from least to most acceleration?

A. Max [tex]\(\rightarrow\)[/tex] Finley [tex]\(\rightarrow\)[/tex] Xander
B. Max [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Finley
C. Xander [tex]\(\rightarrow\)[/tex] Finley [tex]\(\rightarrow\)[/tex] Max
D. Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max



Answer :

Let's determine the acceleration of each individual step-by-step and then list them from least to most acceleration.

### Step-by-Step Solution:

1. Determine Xander's Acceleration:
- Final velocity [tex]\( v_f = 4.5 \, \text{m/s} \)[/tex]
- Initial velocity [tex]\( v_i = 0 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 3.5 \, \text{s} \)[/tex]
- Acceleration [tex]\( a = \frac{v_f - v_i}{t} \)[/tex]
[tex]\[ a_{\text{Xander}} = \frac{4.5 \, \text{m/s} - 0}{3.5 \, \text{s}} = 1.2857142857142858 \, \text{m/s}^2 \][/tex]

2. Determine Finley's Acceleration:
- Final velocity [tex]\( v_f = 3.6 \, \text{m/s} \)[/tex]
- Initial velocity [tex]\( v_i = 0 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 4.2 \, \text{s} \)[/tex]
- Acceleration [tex]\( a = \frac{v_f - v_i}{t} \)[/tex]
[tex]\[ a_{\text{Finley}} = \frac{3.6 \, \text{m/s} - 0}{4.2 \, \text{s}} = 0.8571428571428571 \, \text{m/s}^2 \][/tex]

3. Determine Max's Acceleration:
- Final velocity [tex]\( v_f = 7.3 \, \text{m/s} \)[/tex]
- Initial velocity [tex]\( v_i = 0 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 1.2 \, \text{s} \)[/tex]
- Acceleration [tex]\( a = \frac{v_f - v_i}{t} \)[/tex]
[tex]\[ a_{\text{Max}} = \frac{7.3 \, \text{m/s} - 0}{1.2 \, \text{s}} = 6.083333333333333 \, \text{m/s}^2 \][/tex]

4. Compare and Order the Accelerations:
- Finley's acceleration: [tex]\( 0.8571428571428571 \, \text{m/s}^2 \)[/tex]
- Xander's acceleration: [tex]\( 1.2857142857142858 \, \text{m/s}^2 \)[/tex]
- Max's acceleration: [tex]\( 6.083333333333333 \, \text{m/s}^2 \)[/tex]

From least to most acceleration:
[tex]\[ 0.8571428571428571 \, \text{m/s}^2 < 1.2857142857142858 \, \text{m/s}^2 < 6.083333333333333 \, \text{m/s}^2 \][/tex]

Therefore, listing them from least to most acceleration, we have:
Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max

The correct answer is:
Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max