Which expression is equal to [tex]$53462 \div 14$[/tex]?

A. [tex]$3810 \times 14 \times 12$[/tex]
B. [tex][tex]$3818 \times 14 + 10$[/tex][/tex]
C. [tex]$3810 \times 14 + 12$[/tex]
D. [tex]$3818 \times 14 \times 10$[/tex]



Answer :

To determine which expression equals [tex]\( 53462 \div 14 \)[/tex], let’s calculate each given expression and compare the results with the value of [tex]\( 53462 \div 14 \)[/tex].

1. Calculate [tex]\( 53462 \div 14 \)[/tex]:
[tex]\[ 53462 \div 14 \approx 3818.714285714286 \][/tex]

2. Evaluate each given expression:

- Expression 1: [tex]\( 3810 \times 14 \times 12 \)[/tex]
[tex]\[ 3810 \times 14 \times 12 = 640080 \][/tex]

- Expression 2: [tex]\( 3818 \times 14 + 10 \)[/tex]
[tex]\[ 3818 \times 14 + 10 = 53462 \][/tex]

- Expression 3: [tex]\( 3810 \times 14 + 12 \)[/tex]
[tex]\[ 3810 \times 14 + 12 = 53352 \][/tex]

- Expression 4: [tex]\( 3818 \times 14 \times 10 \)[/tex]
[tex]\[ 3818 \times 14 \times 10 = 534520 \][/tex]

3. Compare values:
- [tex]\( 640080 \)[/tex]
- [tex]\( 53462 \)[/tex]
- [tex]\( 53352 \)[/tex]
- [tex]\( 534520 \)[/tex]
- [tex]\( 3818.714285714286 \)[/tex]

Among these values, [tex]\( 53462 \)[/tex] is the closest to the quotient, so:

[tex]\[ 53462 \div 14 \approx 3818.714285714286 \][/tex]

Therefore, the correct expression that equals [tex]\( 53462 \div 14 \)[/tex] is:
[tex]\[ 3818 \times 14 + 10 \][/tex]

Other Questions