Use [tex]$f(x)=\frac{1}{2} x$[/tex] and [tex]$f^{-1}(x)=2 x$[/tex] to solve the problems.

[tex]\[ f(2)= \][/tex]

[tex]\[ f^{-1}(1)= \][/tex]

[tex]\[ f^{-1}(f(2))= \][/tex]



Answer :

Let's solve the given problems step by step using the functions [tex]\( f(x) = \frac{1}{2} x \)[/tex] and [tex]\( f^{-1}(x) = 2x \)[/tex].

1. Calculate [tex]\( f(2) \)[/tex]:

[tex]\[ f(x) = \frac{1}{2} x \][/tex]

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[ f(2) = \frac{1}{2} \times 2 = 1.0 \][/tex]

So,

[tex]\[ f(2) = 1.0 \][/tex]

2. Calculate [tex]\( f^{-1}(1) \)[/tex]:

[tex]\[ f^{-1}(x) = 2x \][/tex]

Substitute [tex]\( x = 1 \)[/tex]:

[tex]\[ f^{-1}(1) = 2 \times 1 = 2 \][/tex]

So,

[tex]\[ f^{-1}(1) = 2 \][/tex]

3. Calculate [tex]\( f^{-1}(f(2)) \)[/tex]:

We already know from the previous calculation that:

[tex]\[ f(2) = 1.0 \][/tex]

Now, substitute [tex]\( x = 1.0 \)[/tex] into [tex]\( f^{-1}(x) \)[/tex]:

[tex]\[ f^{-1}(1.0) = 2 \times 1.0 = 2.0 \][/tex]

So,

[tex]\[ f^{-1}(f(2)) = 2.0 \][/tex]

### Summary of the results:

[tex]\[ f(2) = 1.0 \][/tex]

[tex]\[ f^{-1}(1) = 2 \][/tex]

[tex]\[ f^{-1}(f(2)) = 2.0 \][/tex]