Select all that are equal to [tex]5^3 \cdot 5^{-7}[/tex]:

A. [tex]\frac{1}{5^{-4}}[/tex]
B. [tex]\frac{1}{5^4}[/tex]
C. [tex]5^{-4}[/tex]
D. [tex]5^4[/tex]
E. [tex]\frac{1}{-625}[/tex]



Answer :

To determine which of the given expressions are equal to [tex]\(5^3 \cdot 5^{-7}\)[/tex], we need to simplify this expression step-by-step and compare it with each option.

### Simplifying [tex]\(5^3 \cdot 5^{-7}\)[/tex]:

Using the properties of exponents, specifically that [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex], we can simplify [tex]\(5^3 \cdot 5^{-7}\)[/tex]:

[tex]\[ 5^3 \cdot 5^{-7} = 5^{3 + (-7)} = 5^{-4} \][/tex]

So, we are looking for expressions that equal [tex]\(5^{-4}\)[/tex].

### Comparing with the given options:

1. [tex]\(\frac{1}{5^{-4}}\)[/tex]:
[tex]\[ \frac{1}{5^{-4}} = 5^4 \][/tex]
This expression evaluates to [tex]\(5^4\)[/tex], not [tex]\(5^{-4}\)[/tex]. It is not equal to [tex]\(5^{-4}\)[/tex].

2. [tex]\(\frac{1}{5^4}\)[/tex]:
[tex]\[ \frac{1}{5^4} \][/tex]
This is the reciprocal of [tex]\(5^4\)[/tex], which means:
[tex]\[ \frac{1}{5^4} = 5^{-4} \][/tex]
This expression is indeed equal to [tex]\(5^{-4}\)[/tex].

3. [tex]\(5^{-4}\)[/tex]:
[tex]\[ 5^{-4} \][/tex]
This is immediately equal to the simplified result, [tex]\(5^{-4}\)[/tex].

4. [tex]\(5^4\)[/tex]:
[tex]\[ 5^4 \][/tex]
This is not equal to [tex]\(5^{-4}\)[/tex]. It is the reciprocal of [tex]\(5^{-4}\)[/tex].

5. [tex]\(\frac{1}{-625}\)[/tex]:
[tex]\[ \frac{1}{-625} \][/tex]
Now, since [tex]\(5^4 = 625\)[/tex], then:
[tex]\[ 5^{-4} = \frac{1}{5^4} = \frac{1}{625} \][/tex]
However, [tex]\(\frac{1}{-625}\)[/tex] is [tex]\(\frac{1}{625}\)[/tex] but negative. Therefore, it is not the same as [tex]\(5^{-4}\)[/tex].

Based on this analysis:

- [tex]\(\frac{1}{5^{-4}}\)[/tex] is .[tex]\(\)[/tex]
- [tex]\(\frac{1}{5^4}\)[/tex] is equal to [tex]\(5^{-4}\)[/tex]
- [tex]\(5^{-4}\)[/tex] is equal to [tex]\(5^{-4}\)[/tex]
- [tex]\(5^4\)[/tex] is not equal to [tex]\(5^{-4}\)[/tex]
- [tex]\(\frac{1}{-625}\)[/tex] is not equal to [tex]\(5^{-4}\)[/tex]

Therefore, the expressions equal to [tex]\(5^3 \cdot 5^{-7}\)[/tex] are:

[tex]\[ \frac{1}{5^4} \quad \text{and} \quad 5^{-4} \][/tex]