Select all that are equal to [tex]6^4 \left( 6^{-5} \right)[/tex].

A. [tex]\frac{1}{6^{-1}}[/tex]

B. [tex]\frac{1}{6}[/tex]

C. [tex]6^{-1}[/tex]

D. [tex]\frac{1}{6^1}[/tex]

E. [tex]\frac{1}{-6}[/tex]



Answer :

To solve the problem, we need to determine the value of the expression [tex]\(6^4(6^{-5})\)[/tex] and compare it with the given choices to find all equivalent expressions.

1. Calculate the expression:
The given expression is [tex]\(6^4(6^{-5})\)[/tex]. By the laws of exponents, this can be simplified:
[tex]\[ 6^4 \cdot 6^{-5} = 6^{4 + (-5)} = 6^{-1} \][/tex]

2. Simplify the expression:
The simplified form of [tex]\(6^{-1}\)[/tex] can be rewritten as:
[tex]\[ 6^{-1} = \frac{1}{6} \][/tex]

Now, we will analyze each of the provided choices to see which ones are equivalent to [tex]\(\frac{1}{6}\)[/tex] or [tex]\(6^{-1}\)[/tex]:

- Choice 1: [tex]\(\frac{1}{6^{-1}}\)[/tex]
[tex]\[ \frac{1}{6^{-1}} = \frac{1}{\frac{1}{6}} = 6 \][/tex]
This is not equivalent to [tex]\(6^{-1}\)[/tex] or [tex]\(\frac{1}{6}\)[/tex].

- Choice 2: [tex]\(\frac{1}{6}\)[/tex]
This directly matches [tex]\(\frac{1}{6}\)[/tex].

- Choice 3: [tex]\(6^{-1}\)[/tex]
This is equivalent to [tex]\(\frac{1}{6}\)[/tex].

- Choice 4: [tex]\(\frac{1}{6^1}\)[/tex]
[tex]\[ 6^1 = 6 \ \Rightarrow \ \frac{1}{6^1} = \frac{1}{6} \][/tex]
This is equivalent to [tex]\(\frac{1}{6}\)[/tex].

- Choice 5: [tex]\(\frac{1}{-6}\)[/tex]
[tex]\[ \frac{1}{-6} = -\frac{1}{6} \][/tex]
This is not equivalent to [tex]\(6^{-1}\)[/tex] or [tex]\(\frac{1}{6}\)[/tex].

Therefore, the choices that are equal to [tex]\(6^4 \left(6^{-5}\right)\)[/tex] and thus [tex]\(\frac{1}{6}\)[/tex] are:

[tex]\[ \boxed{2, 3, 4} \][/tex]