Answer :
To find the average velocity for each leg of Lori's family's trip and sort them from the lowest to the highest velocity, we need to follow these steps:
1. Convert the time from minutes to hours for each leg:
- For leg A: [tex]\( \frac{10}{60} = 0.1667 \)[/tex] hours
- For leg B: [tex]\( \frac{15}{60} = 0.25 \)[/tex] hours
- For leg C: [tex]\( \frac{12}{60} = 0.2 \)[/tex] hours
- For leg D: [tex]\( \frac{9}{60} = 0.15 \)[/tex] hours
- For leg E: [tex]\( \frac{14}{60} = 0.2333 \)[/tex] hours
2. Calculate the average velocity for each leg using the formula [tex]\( \text{average velocity} = \frac{\text{distance}}{\text{time}} \)[/tex]:
- For leg A: [tex]\( \frac{15 \text{ km}}{0.1667 \text{ hr}} \approx 90 \text{ km/hr} \)[/tex]
- For leg B: [tex]\( \frac{20 \text{ km}}{0.25 \text{ hr}} = 80 \text{ km/hr} \)[/tex]
- For leg C: [tex]\( \frac{24 \text{ km}}{0.2 \text{ hr}} = 120 \text{ km/hr} \)[/tex]
- For leg D: [tex]\( \frac{36 \text{ km}}{0.15 \text{ hr}} = 240 \text{ km/hr} \)[/tex]
- For leg E: [tex]\( \frac{14 \text{ km}}{0.2333 \text{ hr}} \approx 60 \text{ km/hr} \)[/tex]
3. List the average velocities in ascending order:
- [tex]\( 60 \text{ km/hr} \)[/tex] (leg E)
- [tex]\( 80 \text{ km/hr} \)[/tex] (leg B)
- [tex]\( 90 \text{ km/hr} \)[/tex] (leg A)
- [tex]\( 120 \text{ km/hr} \)[/tex] (leg C)
- [tex]\( 240 \text{ km/hr} \)[/tex] (leg D)
So, the average velocities sorted from lowest to highest are:
- Leg E: 60 km/hr
- Leg B: 80 km/hr
- Leg A: 90 km/hr
- Leg C: 120 km/hr
- Leg D: 240 km/hr
1. Convert the time from minutes to hours for each leg:
- For leg A: [tex]\( \frac{10}{60} = 0.1667 \)[/tex] hours
- For leg B: [tex]\( \frac{15}{60} = 0.25 \)[/tex] hours
- For leg C: [tex]\( \frac{12}{60} = 0.2 \)[/tex] hours
- For leg D: [tex]\( \frac{9}{60} = 0.15 \)[/tex] hours
- For leg E: [tex]\( \frac{14}{60} = 0.2333 \)[/tex] hours
2. Calculate the average velocity for each leg using the formula [tex]\( \text{average velocity} = \frac{\text{distance}}{\text{time}} \)[/tex]:
- For leg A: [tex]\( \frac{15 \text{ km}}{0.1667 \text{ hr}} \approx 90 \text{ km/hr} \)[/tex]
- For leg B: [tex]\( \frac{20 \text{ km}}{0.25 \text{ hr}} = 80 \text{ km/hr} \)[/tex]
- For leg C: [tex]\( \frac{24 \text{ km}}{0.2 \text{ hr}} = 120 \text{ km/hr} \)[/tex]
- For leg D: [tex]\( \frac{36 \text{ km}}{0.15 \text{ hr}} = 240 \text{ km/hr} \)[/tex]
- For leg E: [tex]\( \frac{14 \text{ km}}{0.2333 \text{ hr}} \approx 60 \text{ km/hr} \)[/tex]
3. List the average velocities in ascending order:
- [tex]\( 60 \text{ km/hr} \)[/tex] (leg E)
- [tex]\( 80 \text{ km/hr} \)[/tex] (leg B)
- [tex]\( 90 \text{ km/hr} \)[/tex] (leg A)
- [tex]\( 120 \text{ km/hr} \)[/tex] (leg C)
- [tex]\( 240 \text{ km/hr} \)[/tex] (leg D)
So, the average velocities sorted from lowest to highest are:
- Leg E: 60 km/hr
- Leg B: 80 km/hr
- Leg A: 90 km/hr
- Leg C: 120 km/hr
- Leg D: 240 km/hr