Simplify the expression [tex]\left(\frac{1}{4ab}\right)^{-2}[/tex]. Assume [tex]a \neq 0, b \neq 0[/tex].

A. [tex]-\frac{1}{16a^2b^2}[/tex]
B. [tex]\frac{a^2b^2}{4}[/tex]
C. [tex]-16a^2b^2[/tex]
D. [tex]16a^2b^2[/tex]



Answer :

To simplify the expression [tex]\(\left(\frac{1}{4 a b}\right)^{-2}\)[/tex], we can follow these steps:

1. Understand the Negative Exponent Rule:
The rule for negative exponents states that [tex]\(\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n\)[/tex]. In other words, flipping the fraction and changing the sign of the exponent.

Therefore,
[tex]\[ \left(\frac{1}{4 a b}\right)^{-2} = \left(\frac{4 a b}{1}\right)^2. \][/tex]

2. Simplify the Fraction:
The fraction [tex]\(\frac{4 a b}{1}\)[/tex] simplifies directly to [tex]\(4 a b\)[/tex].

3. Apply the Positive Exponent:
Now we need to raise [tex]\(4 a b\)[/tex] to the power of 2:
[tex]\[ (4 a b)^2. \][/tex]

4. Apply the Power to Each Term in the Product:
[tex]\[ (4 a b)^2 = 4^2 \cdot a^2 \cdot b^2. \][/tex]
The exponent applies to each factor within the parentheses.

5. Calculate Each Part:
[tex]\[ 4^2 = 16, \][/tex]
and then
[tex]\[ (4 a b)^2 = 4^2 \cdot a^2 \cdot b^2 = 16 a^2 b^2. \][/tex]

So, the simplified form of the expression [tex]\(\left(\frac{1}{4 a b}\right)^{-2}\)[/tex] is:
[tex]\[ \boxed{16 a^2 b^2}. \][/tex]