What is the exact value of [tex]\sin \left(75^{\circ}\right)[/tex]?

A. [tex]\frac{1}{2}[/tex]

B. [tex]\frac{\sqrt{3}}{2}[/tex]

C. [tex]\frac{\sqrt{2-\sqrt{3}}}{2}[/tex]

D. [tex]\frac{\sqrt{2+\sqrt{3}}}{2}[/tex]



Answer :

To find the exact value of [tex]\(\sin(75^\circ)\)[/tex], we can use the angle addition formula for sine. We know that [tex]\(75^\circ\)[/tex] can be written as [tex]\(45^\circ + 30^\circ\)[/tex]. Therefore, we can use the formula for the sine of the sum of two angles:

[tex]\[ \sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b) \][/tex]

For [tex]\(a = 45^\circ\)[/tex] and [tex]\(b = 30^\circ\)[/tex], this gives:

[tex]\[ \sin(75^\circ) = \sin(45^\circ) \cos(30^\circ) + \cos(45^\circ) \sin(30^\circ) \][/tex]

Now, we need the exact values for the sine and cosine of [tex]\(45^\circ\)[/tex] and [tex]\(30^\circ\)[/tex]:

[tex]\[ \sin(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(45^\circ) = \frac{\sqrt{2}}{2}, \quad \sin(30^\circ) = \frac{1}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2} \][/tex]

Now substitute these values into our formula:

[tex]\[ \sin(75^\circ) = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right) \][/tex]

Simplify each term:

[tex]\[ \sin(75^\circ) = \frac{\sqrt{2} \cdot \sqrt{3}}{4} + \frac{\sqrt{2} \cdot 1}{4} \][/tex]

[tex]\[ \sin(75^\circ) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]

Combine the fractions:

[tex]\[ \sin(75^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4} \][/tex]

By considering the given answers and the form of our result:

[tex]\[ \sin(75^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{\sqrt{2+\sqrt{3}}}{2} \][/tex]

So, the exact value of [tex]\(\sin(75^\circ)\)[/tex] is

[tex]\[ \frac{\sqrt{2+\sqrt{3}}}{2} \][/tex]