Find: [tex]\left(6m^5 + 3 - m^3 - 4m\right) - \left(-m^5 + 2m^3 - 4m + 6\right)[/tex]

1. Write subtraction of a polynomial expression as addition of the additive inverse.
[tex]\left(6m^5 + 3 - m^3 - 4m\right) + \left(m^5 - 2m^3 + 4m - 6\right)[/tex]

2. Rewrite terms that are subtracted as addition of the opposite.
[tex]6m^5 + 3 + \left(-m^3\right) + \left(-4m\right) + m^5 + \left(-2m^3\right) + 4m + \left(-6\right)[/tex]

3. Group like terms.
[tex]\left(6m^5 + m^5\right) + \left(3 + (-6)\right) + \left(-m^3 + (-2m^3)\right) + \left(-4m + 4m\right)[/tex]

4. Combine like terms.
[tex]7m^5 + (-3) + (-3m^3) + 0[/tex]

5. Write the resulting polynomial in standard form.
[tex]7m^5 - 3m^3 - 3[/tex]



Answer :

To find the result of the polynomial subtraction [tex]\(\left(6 m^5+3-m^3-4 m\right)-\left(-m^5+2 m^3-4 m+6\right)\)[/tex], let's follow the step-by-step process:

1. Write the subtraction of a polynomial expression as addition of the additive inverse:
[tex]\[ \left(6 m^5 + 3 - m^3 - 4 m\right) + \left(m^5 - 2 m^3 + 4 m - 6\right) \][/tex]

2. Rewrite terms that are subtracted as addition of the opposite:
[tex]\[ 6 m^5 + 3 + (-m^3) + (-4 m) + m^5 + (-2 m^3) + 4 m + (-6) \][/tex]

3. Group like terms:
[tex]\[ \left[6 m^5 + m^5\right] + [3 + (-6)] + \left[(-m^3) + (-2 m^3)\right] + [(-4 m) + 4 m] \][/tex]

4. Combine like terms:
- Combine the [tex]\(m^5\)[/tex] terms:
[tex]\[ 6 m^5 + m^5 = 7 m^5 \][/tex]
- Combine the constant terms:
[tex]\[ 3 + (-6) = 3 - 6 = -3 \][/tex]
- Combine the [tex]\(m^3\)[/tex] terms:
[tex]\[ -m^3 + (-2 m^3) = -m^3 - 2 m^3 = -3 m^3 \][/tex]
- Combine the [tex]\(m\)[/tex] terms (note that they cancel out):
[tex]\[ -4 m + 4 m = 0 \][/tex]

5. Write the resulting polynomial in standard form:
[tex]\[ 7 m^5 - 3 m^3 - 3 \][/tex]

Therefore, the result of the given polynomial subtraction is:
[tex]\[ \boxed{7 m^5 - 3 m^3 - 3} \][/tex]