Drag each value to the correct location on the table. Not all values will be used. Find the amplitude, period, and midline for the given functions.

| Function | Midline | Amplitude | Period |
|-------------------------------------------------|----------|-----------|-----------------|
| [tex]$6 \sin (4 x-10)+3$[/tex] | [tex]$y=3$[/tex] | 6 | [tex]$\frac{\pi}{2}$[/tex] |
| [tex]$\frac{1}{3} \sin (6 x+4)-10$[/tex] | [tex]$y=-10$[/tex] | [tex]$\frac{1}{3}$[/tex] | [tex]$\frac{\pi}{3}$[/tex] |
| [tex]$\frac{2}{3} \cos (7 x+10)-4$[/tex] | [tex]$y=-4$[/tex] | [tex]$\frac{2}{3}$[/tex] | [tex]$\frac{2 \pi}{7}$[/tex] |
| [tex]$-10 \cos \left(\frac{2}{3} x+\frac{1}{6}\right)+8$[/tex] | [tex]$y=8$[/tex] | 10 | [tex]$\frac{3 \pi}{1}$[/tex] |

Values to use:
- Midline: [tex]$y=3$[/tex], [tex]$y=-10$[/tex], [tex]$y=-4$[/tex], [tex]$y=8$[/tex]
- Amplitude: 6, [tex]$\frac{1}{3}$[/tex], [tex]$\frac{2}{3}$[/tex], 10
- Period: [tex]$\frac{\pi}{2}$[/tex], [tex]$\frac{\pi}{3}$[/tex], [tex]$\frac{2 \pi}{7}$[/tex], [tex]$\frac{3 \pi}{1}$[/tex]



Answer :

Let's break down the given functions and identify their amplitude, period, and midline step-by-step.

We'll analyze each function one at a time.

### 1. [tex]\( 6 \sin (4x - 10) + 3 \)[/tex]

Amplitude: The amplitude is the coefficient of the sine function. Here, it is 6.

Period: The period of a sine or cosine function [tex]\( \sin(Bx + C) \)[/tex] or [tex]\( \cos(Bx + C) \)[/tex] is calculated as [tex]\( \frac{2\pi}{|B|} \)[/tex].
For this function, [tex]\( B = 4 \)[/tex].
[tex]\[ \text{Period} = \frac{2\pi}{4} = \frac{\pi}{2} \][/tex]

Midline: The midline is the constant term added at the end of the function. Here, it is 3.

So, for [tex]\( 6 \sin (4x - 10) + 3 \)[/tex]:
- Amplitude: [tex]\( 6 \)[/tex]
- Period: [tex]\( \frac{\pi}{2} \)[/tex]
- Midline: [tex]\( 3 \)[/tex]

### 2. [tex]\( \frac{1}{3} \sin (6x + 4) - 10 \)[/tex]

Amplitude: The amplitude is the coefficient of the sine function. Here, it is [tex]\( \frac{1}{3} \)[/tex].

Period: For this function, [tex]\( B = 6 \)[/tex].
[tex]\[ \text{Period} = \frac{2\pi}{6} = \frac{\pi}{3} \][/tex]

Midline: The midline is the constant term subtracted at the end of the function. Here, it is [tex]\( -10 \)[/tex].

So, for [tex]\( \frac{1}{3} \sin (6x + 4) - 10 \)[/tex]:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( \frac{\pi}{3} \)[/tex]
- Midline: [tex]\( -10 \)[/tex]

### 3. [tex]\( \frac{2}{3} \cos (7x + 10) - 4 \)[/tex]

Amplitude: The amplitude is the coefficient of the cosine function. Here, it is [tex]\( \frac{2}{3} \)[/tex].

Period: For this function, [tex]\( B = 7 \)[/tex].
[tex]\[ \text{Period} = \frac{2\pi}{7} \][/tex]

Midline: The midline is the constant term subtracted at the end of the function. Here, it is [tex]\( -4 \)[/tex].

So, for [tex]\( \frac{2}{3} \cos (7x + 10) - 4 \)[/tex]:
- Amplitude: [tex]\( \frac{2}{3} \)[/tex]
- Period: [tex]\( \frac{2\pi}{7} \)[/tex]
- Midline: [tex]\( -4 \)[/tex]

### 4. [tex]\( -10 \cos \left(\frac{2}{3} x + \frac{1}{6}\right) + 8 \)[/tex]

Amplitude: The amplitude is the coefficient of the cosine function, ignoring the negative sign since amplitude is always positive. Here, it is [tex]\( 10 \)[/tex].

Period: For this function, [tex]\( B = \frac{2}{3} \)[/tex].
[tex]\[ \text{Period} = \frac{2\pi}{\frac{2}{3}} = 3 \times 2\pi = 6\pi \approx 9.42477796076938 \][/tex]

Midline: The midline is the constant term added at the end of the function. Here, it is [tex]\( 8 \)[/tex].

So, for [tex]\( -10 \cos \left(\frac{2}{3} x + \frac{1}{6}\right) + 8 \)[/tex]:
- Amplitude: [tex]\( 10 \)[/tex]
- Period: [tex]\( 6\pi \)[/tex]
- Midline: [tex]\( 8 \)[/tex]

### Summary

| Function | Amplitude | Period | Midline |
|---------------------------------------------|-------------|-------------------|---------|
| [tex]\( 6 \sin (4x - 10) + 3 \)[/tex] | [tex]\( 6 \)[/tex] | [tex]\( \frac{\pi}{2} \)[/tex] | [tex]\( 3 \)[/tex] |
| [tex]\( \frac{1}{3} \sin (6x + 4) - 10 \)[/tex] | [tex]\( \frac{1}{3} \)[/tex] | [tex]\( \frac{\pi}{3} \)[/tex] | [tex]\( -10 \)[/tex] |
| [tex]\( \frac{2}{3} \cos (7x + 10) - 4 \)[/tex] | [tex]\( \frac{2}{3} \)[/tex] | [tex]\( \frac{2\pi}{7} \)[/tex] | [tex]\( -4 \)[/tex] |
| [tex]\( -10 \cos \left(\frac{2}{3} x + \frac{1}{6}\right) + 8 \)[/tex] | [tex]\( 10 \)[/tex] | [tex]\( 6\pi \approx 9.42477796076938 \)[/tex] | [tex]\( 8 \)[/tex] |