Use synthetic division to find all the possible factors of this polynomial.

[tex]\[ p(x) = x^4 + 4x^3 - 7x^2 - 22x + 24 \][/tex]

Select all the correct expressions in the table.

\begin{tabular}{|c|c|c|}
\hline
[tex]$x-1$[/tex] & [tex]$x+$[/tex] & [tex]$x-2$[/tex] \\
\hline
[tex]$x+$[/tex] & 1 & [tex]$x-2$[/tex] \\
\hline
[tex]$x+$[/tex] & [tex]$x-3$[/tex] & [tex]$\overline{+}+$[/tex] \\
\hline
2 & 3 & \\
\hline
[tex]$x-4$[/tex] & [tex]$x+$[/tex] & [tex]$\overline{-}+\overline{6}$[/tex] \\
\hline
[tex]$x-$[/tex] & 4 & \\
\hline
\end{tabular}



Answer :

To determine the factors of the polynomial [tex]\( p(x) = x^4 + 4x^3 - 7x^2 - 22x + 24 \)[/tex] using synthetic division, we need to test potential rational roots. These potential roots are derived from the factors of the constant term ([tex]\( \pm 24 \)[/tex]) and the leading coefficient ([tex]\( 1 \)[/tex]), which are: [tex]\( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24 \)[/tex].

We evaluate each candidate factor, and if the remainder of the synthetic division is zero, then the candidate is a root of the polynomial. Let's walk through the synthetic division process for each valid root.

### Step-by-Step Synthetic Division Process

#### Testing [tex]\( x = -4 \)[/tex]:

1. Write down the coefficients of [tex]\( p(x) \)[/tex]: [tex]\( 1, 4, -7, -22, 24 \)[/tex].
2. Set up the synthetic division:

[tex]\[ \begin{array}{r|rrrrr} -4 & 1 & 4 & -7 & -22 & 24 \\ & & -4 & 0 & 28 & -24 \\ \hline & 1 & 0 & -7 & 6 & 0 \\ \end{array} \][/tex]

Since the remainder is [tex]\( 0 \)[/tex], [tex]\( x = -4 \)[/tex] is a root.

#### Testing [tex]\( x = -3 \)[/tex]:

1. Using the same coefficients [tex]\( 1, 4, -7, -22, 24 \)[/tex]:
2. Synthetic division setup:

[tex]\[ \begin{array}{r|rrrrr} -3 & 1 & 4 & -7 & -22 & 24 \\ & & -3 & -3 & 30 & -24 \\ \hline & 1 & 1 & -10 & 8 & 0 \\ \end{array} \][/tex]

The remainder [tex]\( 0 \)[/tex], so [tex]\( x = -3 \)[/tex] is a root.

#### Testing [tex]\( x = 1 \)[/tex]:

1. Using the coefficients [tex]\( 1, 4, -7, -22, 24 \)[/tex]:
2. Synthetic division setup:

[tex]\[ \begin{array}{r|rrrrr} 1 & 1 & 4 & -7 & -22 & 24 \\ & & 1 & 5 & -2 & -24 \\ \hline & 1 & 5 & -2 & -24 & 0 \\ \end{array} \][/tex]

The remainder [tex]\( 0 \)[/tex], so [tex]\( x = 1 \)[/tex] is a root.

#### Testing [tex]\( x = 2 \)[/tex]:

1. Using the coefficients [tex]\( 1, 4, -7, -22, 24 \)[/tex]:
2. Synthetic division setup:

[tex]\[ \begin{array}{r|rrrrr} 2 & 1 & 4 & -7 & -22 & 24 \\ & & 2 & 12 & 10 & -24 \\ \hline & 1 & 6 & 5 & -12 & 0 \\ \end{array} \][/tex]

The remainder [tex]\( 0 \)[/tex], so [tex]\( x = 2 \)[/tex] is a root.

### Conclusion

We have identified through synthetic division that the factors of the polynomial [tex]\( p(x) \)[/tex] are [tex]\( x = -4, -3, 1, 2 \)[/tex].

Thus, the correct roots using synthetic division are:
[tex]\[ \boxed{x = -4, x = -3, x = 1, x = 2} \][/tex]