Describe how to simplify the expression [tex]\frac{3^{-6}}{3^{-4}}[/tex].

A. Divide the bases and then add the exponents.
B. Keep the base the same and then add the exponents.
C. Multiply the bases and then subtract the exponents.
D. Keep the base the same and then subtract the exponents.



Answer :

To simplify the expression [tex]\(\frac{3^{-6}}{3^{-4}}\)[/tex], we use the rules of exponents. Specifically, we apply the rule that states [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]. Here is the step-by-step solution:

1. Identify the base and the exponents: The base is 3 in both the numerator and the denominator. The exponent in the numerator is -6, and the exponent in the denominator is -4.

2. Apply the exponent rule for division: According to the exponent rule, when you divide like bases, you subtract the exponent in the denominator from the exponent in the numerator. Therefore, we compute:
[tex]\[ 3^{-6 - (-4)} \][/tex]

3. Simplify the exponent subtraction:
[tex]\[ -6 - (-4) = -6 + 4 = -2 \][/tex]

4. Rewrite the expression with the simplified exponent:
[tex]\[ 3^{-2} \][/tex]

5. Convert the negative exponent to a positive exponent by taking the reciprocal: Recall that [tex]\(a^{-m} = \frac{1}{a^m}\)[/tex]. Thus,
[tex]\[ 3^{-2} = \frac{1}{3^2} \][/tex]

6. Calculate the value of [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

7. Express the final simplified result:
[tex]\[ 3^{-2} = \frac{1}{9} \][/tex]

Therefore, the simplified expression [tex]\(\frac{3^{-6}}{3^{-4}}\)[/tex] results in [tex]\(\boxed{\frac{1}{9}}\)[/tex].

In other terms, [tex]\(3^{-2} = \frac{1}{9} \approx 0.1111111111\)[/tex].