We know that dividing by a fraction is the same as multiplying by the reciprocal. So to divide by [tex]\frac{1}{2}[/tex], multiply by its reciprocal, which is 2.

[tex]\[
\begin{aligned}
\frac{1}{2}(x+9) &= \frac{7}{8} x \\
2\left(\frac{1}{2}\right)(x+9) &= 2\left(\frac{7}{8} x\right) \\
x+9 &= \frac{14}{8} x \\
x+9 &= \frac{7}{4} x
\end{aligned}
\][/tex]

Solve the equation [tex]x+9=\frac{7}{4} x[/tex] for [tex]x[/tex].

Use the keypad to enter the answer in the box:

[tex]\[
x = \square
\][/tex]



Answer :

Let's solve the equation [tex]\( x + 9 = \frac{7}{4}x \)[/tex] for [tex]\( x \)[/tex].

1. Start with the given equation:
[tex]\[ x + 9 = \frac{7}{4}x \][/tex]

2. To solve for [tex]\( x \)[/tex], we need to get all [tex]\( x \)[/tex]-terms on one side of the equation. Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ x + 9 - x = \frac{7}{4}x - x \][/tex]
Simplifying the left side, we get:
[tex]\[ 9 = \frac{7}{4}x - x \][/tex]

3. Combine the [tex]\( x \)[/tex]-terms on the right side. Recall that [tex]\( x \)[/tex] is equivalent to [tex]\( \frac{4}{4}x \)[/tex]:
[tex]\[ 9 = \frac{7}{4}x - \frac{4}{4}x \][/tex]
Simplify by combining the fractions:
[tex]\[ 9 = \left(\frac{7}{4} - \frac{4}{4}\right)x \][/tex]
[tex]\[ 9 = \frac{3}{4}x \][/tex]

4. Now we need to solve for [tex]\( x \)[/tex]. To isolate [tex]\( x \)[/tex], multiply both sides of the equation by the reciprocal of [tex]\( \frac{3}{4} \)[/tex], which is [tex]\( \frac{4}{3} \)[/tex]:
[tex]\[ x = 9 \cdot \frac{4}{3} \][/tex]

5. Perform the multiplication:
[tex]\[ x = 9 \cdot \frac{4}{3} = 9 \cdot \frac{4}{3} = \frac{9 \cdot 4}{3} = \frac{36}{3} = 12 \][/tex]

So, the solution to the equation [tex]\( x + 9 = \frac{7}{4}x \)[/tex] is:
[tex]\[ x = 12 \][/tex]