Answer :

To solve the equation:

[tex]\[ 4(x - 2) + 18 = \frac{1}{2} x + 10 \][/tex]

we follow these steps:

1. Distribute the 4 inside the parentheses:
[tex]\[ 4(x - 2) + 18 = \frac{1}{2} x + 10 \][/tex]
becomes
[tex]\[ 4x - 8 + 18 = \frac{1}{2} x + 10 \][/tex]

2. Combine like terms on the left-hand side:
[tex]\[ 4x - 8 + 18 = 4x + 10 \][/tex]
becomes
[tex]\[ 4x + 10 = \frac{1}{2} x + 10 \][/tex]

3. Move all terms involving [tex]\( x \)[/tex] to one side and constants to the other side. First, subtract [tex]\( \frac{1}{2} x \)[/tex] from both sides to move the [tex]\( x \)[/tex] terms together:
[tex]\[ 4x - \frac{1}{2} x = 10 - 10 \][/tex]

4. Combine the [tex]\( x \)[/tex] terms:
[tex]\[ \frac{8}{2}x - \frac{1}{2} x = 0 \][/tex]
[tex]\[ \frac{7}{2} x = 0 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 0 \][/tex]

So, the solution to the equation is:
[tex]\[ x = 0 \][/tex]