A cube inscribed in a sphere has a volume of 125 cubic units. What is the volume of the sphere in cubic units?

A. [tex]25 \pi \sqrt{3}[/tex]
B. [tex]\frac{125 \pi \sqrt{3}}{2}[/tex]
C. [tex]\frac{375 \pi \sqrt{3}}{8}[/tex]
D. [tex]\frac{5 \pi \sqrt{3}}{12}[/tex]



Answer :

To solve for the volume of the sphere when a cube is inscribed in it, and given that the cube's volume is 125 cubic units, let's follow these steps:

1. Calculate the side length of the cube:
The volume [tex]\( V \)[/tex] of a cube is given by:
[tex]\[ V = s^3 \][/tex]
where [tex]\( s \)[/tex] is the side length. Given [tex]\( V = 125 \)[/tex]:
[tex]\[ s^3 = 125 \implies s = \sqrt[3]{125} = 5 \text{ units} \][/tex]

2. Calculate the diagonal of the cube:
The diagonal [tex]\( d \)[/tex] of a cube relates to its side length by the formula:
[tex]\[ d = s\sqrt{3} \][/tex]
Substituting [tex]\( s = 5 \)[/tex]:
[tex]\[ d = 5\sqrt{3} \][/tex]

3. Determine the radius of the sphere:
Since the sphere is circumscribed around the cube, its diameter is equal to the diagonal of the cube. Thus, the radius [tex]\( r \)[/tex] of the sphere is:
[tex]\[ r = \frac{d}{2} = \frac{5\sqrt{3}}{2} \][/tex]

4. Calculate the volume of the sphere:
The volume [tex]\( V \)[/tex] of a sphere is given by:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substituting [tex]\( r = \frac{5\sqrt{3}}{2} \)[/tex]:
[tex]\[ V = \frac{4}{3} \pi \left( \frac{5\sqrt{3}}{2} \right)^3 \][/tex]
Simplifying the term inside the cube:
[tex]\[ \left( \frac{5\sqrt{3}}{2} \right)^3 = \frac{(5\sqrt{3})^3}{2^3} = \frac{125 \cdot 3\sqrt{3}}{8} = \frac{375\sqrt{3}}{8} \][/tex]
Now substituting back into the volume formula:
[tex]\[ V = \frac{4}{3} \pi \left( \frac{375\sqrt{3}}{8} \right) \][/tex]
Simplifying further:
[tex]\[ V = \frac{4 \cdot 375\sqrt{3} \pi}{24} = \frac{125 \pi \sqrt{3}}{2} \][/tex]

Thus, the volume of the sphere is:
[tex]\[ \boxed{\frac{125 \pi \sqrt{3}}{2}} \][/tex]