Write the equation of the line in slope-intercept form [tex](y = mx + b)[/tex].

Slope [tex] = 3[/tex]

Point on the line [tex] = (-2, 2)[/tex]

Answer:
[tex]
y =
[/tex]



Answer :

To find the equation of a line in slope-intercept form [tex]\( y = mx + b \)[/tex], we need to determine the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex]. We are given the slope [tex]\( m = 3 \)[/tex] and a point on the line [tex]\((-2, 2)\)[/tex].

Here's the step-by-step process:

1. Substitute the slope and the point into the point-slope form of the equation:

The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]

Given:
- Slope [tex]\( m = 3 \)[/tex]
- Point [tex]\((x_1, y_1) = (-2, 2)\)[/tex]

Substitute these values in:
[tex]\[ y - 2 = 3(x - (-2)) \][/tex]

Simplify inside the parenthesis:
[tex]\[ y - 2 = 3(x + 2) \][/tex]

2. Distribute the slope (3) on the right-hand side:
[tex]\[ y - 2 = 3x + 6 \][/tex]

3. Solve for [tex]\( y \)[/tex] to get the equation into slope-intercept form:
[tex]\[ y = 3x + 6 + 2 \][/tex]

Add the constants on the right-hand side:
[tex]\[ y = 3x + 8 \][/tex]

Therefore, the equation of the line in slope-intercept form is:
[tex]\[ y = 3x + 8 \][/tex]

So, the answer is:
[tex]\[ y = 3x + 8 \][/tex]