परिणाम गुणोत्तर श्रेणीमा हुन्छ भने,

The sum of three terms in an arithmetic series having a positive common difference is 24. If 1, 6, and 18 are added respectively, the results are in a geometric series.

(a) समानान्तरीय श्रेणी र गुणोत्तर श्रेणीको कुनै एक फरक लेब्नुहोस्।
(Write a difference between arithmetic series and geometric series.)

(b) समानान्तर श्रेणीको दोस्रो पद पत्ता लगाउनुहोस्।
(Find the second term of the arithmetic series.)

(c) धनात्मक समान अन्तर पत्ता लगाउनुहोस्।
(Find the positive common difference.)

(d) सो समानान्तर श्रेणीको कति औं पद 104 हुन्छ?
(Which term of the arithmetic series is 104?)

(e) समानान्तर श्रेणीका पहिलो 5 पदहरू र गुणोत्तर श्रेणीका पहिलो 4 पदहरूको योगफल तुलना गर्नुहोस्।
(Compare the sum of the first five terms of the arithmetic series and the first four terms of the geometric series.)

Ans:
(b) 8
(c) [tex]d = 2[/tex]
(d) 59



Answer :

- Let's analyze the mathematical problem step by step to derive the required values.

(a) समानान्तर श्रेणी र गुणोत्तर श्रेणीको कुनै एक फरक लेब्नुहोस्।

- Arithmetic Series (समानान्तर श्रेणी): In an arithmetic series, the difference between consecutive terms is constant. For example, if the first term is [tex]\(a\)[/tex] and the common difference is [tex]\(d\)[/tex], the terms are [tex]\(a, a + d, a + 2d, a + 3d,\)[/tex] and so on.

- Geometric Series (गुणोत्तर श्रेणी): In a geometric series, the ratio between consecutive terms is constant. For example, if the first term is [tex]\(a\)[/tex] and the common ratio is [tex]\(r\)[/tex], the terms are [tex]\(a, ar, ar^2, ar^3,\)[/tex] and so on.

(b) समानान्तर श्रेणीको दोस्रो पद पत्ता लगाउनुहोस्।

Given, the sum of three terms in the arithmetic series is 24. Let the terms be [tex]\(a - d\)[/tex], [tex]\(a\)[/tex], and [tex]\(a + d\)[/tex].

The sum of these terms is:
[tex]\[ (a - d) + a + (a + d) = 3a = 24 \][/tex]
Thus,
[tex]\[ a = \frac{24}{3} = 8 \][/tex]
So, the second term of the arithmetic series is [tex]\(8\)[/tex].

(c) धनात्मक समान अन्तर पत्ता लगाउनुहोस्।

Given that adding 1, 6, and 18 to the terms gives a geometric series, the terms transform to [tex]\(a - d + 1\)[/tex], [tex]\(a + 6\)[/tex], and [tex]\(a + d + 18\)[/tex].

These transformed terms are in a geometric series. Therefore, the ratio between consecutive terms must be the same:
[tex]\[ \frac{a + 6}{a - d + 1} = \frac{a + d + 18}{a + 6} \][/tex]

Substitute [tex]\(a = 8\)[/tex]:
[tex]\[ \frac{8 + 6}{8 - d + 1} = \frac{8 + d + 18}{8 + 6} \][/tex]
[tex]\[ \frac{14}{9 - d} = \frac{26 + d}{14} \][/tex]

Cross-multiplying:
[tex]\[ 14 \times 14 = (9 - d)(26 + d) \Rightarrow 196 = 234 + 17d - d^2 \][/tex]

Rearranging the equation:
[tex]\[ d^2 - 17d + 38 = 0 \][/tex]

Solving this quadratic equation using the quadratic formula [tex]\(d = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -17\)[/tex], and [tex]\(c = 38\)[/tex]:
[tex]\[ d = \frac{17 \pm \sqrt{17^2 - 4 \times 1 \times 38}}{2 \times 1} \][/tex]
[tex]\[ d = \frac{17 \pm \sqrt{289 - 152}}{2} \][/tex]
[tex]\[ d = \frac{17 \pm \sqrt{137}}{2} \][/tex]

Since [tex]\(d\)[/tex] must be positive and making an approximate evaluation:
[tex]\[ \sqrt{137} \approx 11.7 \][/tex]
[tex]\[ d \approx \frac{17 + 11.7}{2} = \frac{28.7}{2} = 14.35 \][/tex]

Thus, the common difference [tex]\(d\)[/tex] positive value is approximately [tex]\(14.35\)[/tex].

(d) सो समानान्तर श्रेणीको कति औ पद 104 हुन्छ ?

The [tex]\(n\)[/tex]th term of an arithmetic series is given by:
[tex]\[ a_n = a + (n-1)d \][/tex]

We need to find [tex]\(n\)[/tex] for which [tex]\(a_n = 104\)[/tex]:
[tex]\[ 104 = 8 + (n-1) \times 14.35 \][/tex]
[tex]\[ 104 - 8 = (n-1) \times 14.35 \][/tex]
[tex]\[ 96 = (n-1) \times 14.35 \][/tex]
[tex]\[ n - 1 = \frac{96}{14.35} \approx 6.69 \][/tex]

Therefore, the [tex]\(n\)[/tex]th term is approximately [tex]\(7\)[/tex].

(e) समानान्तर श्रेणीको पहिला 5 पदहरू र गुणोत्तर श्रेणीका पहिला 4 पदहरूको योगफल तुलना गर्नुहोस्।

Arithmetic series sum of the first 5 terms:
The sum of the first [tex]\(n\)[/tex] terms of an arithmetic series [tex]\(S_n\)[/tex] is given by:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
For the first 5 terms:
[tex]\[ S_5 = \frac{5}{2} \left( 2 \times 8 + 4 \times 14.35 \right) \][/tex]
[tex]\[ S_5 = \frac{5}{2} \left( 16 + 57.4 \right) \][/tex]
[tex]\[ S_5 = \frac{5}{2} \times 73.4 = 5 \times 36.7 = 183.5 \][/tex]

Geometric series sum of the first 4 terms:
The sum of the first [tex]\(n\)[/tex] terms of a geometric series [tex]\(S_n\)[/tex] is given by:
[tex]\[ S_n = a \frac{(r^n - 1)}{r - 1} \][/tex]

The first term of the geometric series is [tex]\(term1 = a - d + 1 = 8 - 14.35 + 1\)[/tex]:
[tex]\[ term1 = -5.35 \][/tex]

The common ratio is:
[tex]\[ term2 / term1 = 14 / -5.35 =-2.61 \ (approximately) \][/tex]

Thus,
\[
S_4 = -5.35 \frac{((-2.61)^4- 1)}{-2.61 - 1}
= -5.35 \left(\frac{46.46 - 1}{-3.61}\right)
= -5.35 \(-12.56)
=\approx 374.436\

Thus Arithmetic methods uses
\ = sum Arithmetic = 183.5 and
\= of G.Sum= 374.436