A media company wants to track the results of its new marketing plan, so the video production manager recorded the number of views for one of the company's online videos. The results of the first 5 weeks are shown in this table.

[tex]\[
\begin{tabular}{|c|c|}
\hline
Weeks, $x$ & Views, $f(x)$ \\
\hline
0 & 5,120 \\
\hline
1 & 6,400 \\
\hline
2 & 8,000 \\
\hline
3 & 10,000 \\
\hline
4 & 12,500 \\
\hline
5 & 15,625 \\
\hline
\end{tabular}
\][/tex]

Write an equation to model the relationship between the number of weeks, [tex]$x$[/tex], and the number of views, [tex]$f(x)$[/tex].
Enter the correct answer in the box by replacing the values of [tex]$a$[/tex] and [tex]$b$[/tex].

[tex]\[
f(x) = a(b)^x
\][/tex]



Answer :

To determine the relationship between the number of weeks [tex]\(x\)[/tex] and the number of views [tex]\(f(x)\)[/tex], we can use an exponential function of the form:

[tex]\[ f(x) = a \cdot b^x \][/tex]

Here, [tex]\(a\)[/tex] represents the initial number of views when [tex]\(x = 0\)[/tex], and [tex]\(b\)[/tex] represents the growth factor per week.

Based on the given data and calculations, we find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

From the table:

[tex]\[ \begin{array}{|c|c|} \hline \text{Weeks}, \; x & \text{Views}, \; f(x) \\ \hline 0 & 5{,}120 \\ \hline 1 & 6{,}400 \\ \hline 2 & 8{,}000 \\ \hline 3 & 10{,}000 \\ \hline 4 & 12{,}500 \\ \hline 5 & 15{,}625 \\ \hline \end{array} \][/tex]

We can determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] as follows:

- [tex]\(a\)[/tex] is the initial value when [tex]\(x = 0\)[/tex], which is [tex]\(5{,}120\)[/tex].
- [tex]\(b\)[/tex] is the growth rate, which is approximately [tex]\(1.25\)[/tex].

Thus, substituting [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the exponential function:

[tex]\[ f(x) = 5119.999999999992 \cdot (1.2499999999999998)^x \][/tex]

For simplicity, we can round the coefficients to:

[tex]\[ f(x) = 5120 \cdot 1.25^x \][/tex]

This equation models the relationship between the number of weeks [tex]\(x\)[/tex] and the number of views [tex]\(f(x)\)[/tex]:

[tex]\[ \boxed{f(x) = 5120 \cdot 1.25^x} \][/tex]

Other Questions