Solve the following system of linear equations using substitution. Verify that the solution satisfies both equations.

[tex]\[
\begin{array}{l}
x + 6y = 1 \\
y = \frac{2}{3}x - 4
\end{array}
\][/tex]



Answer :

To solve the given system of linear equations using substitution, we'll go through the process step by step:

1. Write down the system of equations:

[tex]\[ \begin{array}{l} x + 6y = 1 \\ y = \frac{2}{3}x - 4 \end{array} \][/tex]

2. Substitute the expression for [tex]\( y \)[/tex] from the second equation into the first equation:

We know from the second equation that [tex]\( y = \frac{2}{3}x - 4 \)[/tex]. Substitute this into the first equation:

[tex]\[ x + 6\left(\frac{2}{3}x - 4\right) = 1 \][/tex]

3. Simplify the resulting equation:

Expanding and simplifying the terms inside the parentheses:

[tex]\[ x + 6 \cdot \frac{2}{3}x - 6 \cdot 4 = 1 \][/tex]

[tex]\[ x + 4x - 24 = 1 \][/tex]

Combine like terms:

[tex]\[ 5x - 24 = 1 \][/tex]

4. Solve for [tex]\( x \)[/tex]:

Add 24 to both sides of the equation:

[tex]\[ 5x = 25 \][/tex]

Divide by 5:

[tex]\[ x = 5 \][/tex]

5. Substitute [tex]\( x = 5 \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:

Using the second equation [tex]\( y = \frac{2}{3}x - 4 \)[/tex]:

[tex]\[ y = \frac{2}{3}(5) - 4 \][/tex]

Calculate:

[tex]\[ y = \frac{10}{3} - 4 \][/tex]

Convert 4 to a fraction with the same denominator:

[tex]\[ y = \frac{10}{3} - \frac{12}{3} \][/tex]

Subtract the fractions:

[tex]\[ y = -\frac{2}{3} \][/tex]

So, the solution to the system is [tex]\( x = 5 \)[/tex] and [tex]\( y = -\frac{2}{3} \)[/tex].

6. Verify the solution in both original equations:

Substitute [tex]\( x = 5 \)[/tex] and [tex]\( y = -\frac{2}{3} \)[/tex] into the first equation:

[tex]\[ 5 + 6\left(-\frac{2}{3}\right) = 1 \][/tex]

Calculate:

[tex]\[ 5 - 4 = 1 \][/tex]

Which simplifies to:

[tex]\[ 1 = 1 \quad \text{(True)} \][/tex]

Substitute [tex]\( x = 5 \)[/tex] and [tex]\( y = -\frac{2}{3} \)[/tex] into the second equation:

[tex]\[ y = \frac{2}{3} \cdot 5 - 4 \][/tex]

Calculate:

[tex]\[ -\frac{2}{3} = \frac{10}{3} - 4 \][/tex]

Again, convert 4 to the same denominator:

[tex]\[ -\frac{2}{3} = \frac{10}{3} - \frac{12}{3} \][/tex]

Which simplifies to:

[tex]\[ -\frac{2}{3} = -\frac{2}{3} \quad \text{(True)} \][/tex]

Since substituting [tex]\( x = 5 \)[/tex] and [tex]\( y = -\frac{2}{3} \)[/tex] satisfies both equations, we conclude that the solution to the system is [tex]\( x = 5 \)[/tex] and [tex]\( y = -\frac{2}{3} \)[/tex].