Answer :
Sure, let's solve the problem step by step.
Given the expression [tex]\((4a^2 - 6ab + 9b^2)(2a + 3b)\)[/tex] with [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex]:
1. Evaluate the polynomial inside the parentheses [tex]\((4a^2 - 6ab + 9b^2)\)[/tex]:
[tex]\[ 4a^2 - 6ab + 9b^2 \][/tex]
Substituting [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ 4(2)^2 - 6(2)(1) + 9(1)^2 \][/tex]
Calculate each term:
[tex]\[ 4(4) - 6(2) + 9(1) \][/tex]
[tex]\[ 16 - 12 + 9 \][/tex]
[tex]\[ 16 - 12 = 4 \][/tex]
[tex]\[ 4 + 9 = 13 \][/tex]
So, [tex]\(4a^2 - 6ab + 9b^2 = 13\)[/tex] when [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
2. Evaluate the linear term [tex]\((2a + 3b)\)[/tex]:
[tex]\[ 2a + 3b \][/tex]
Substituting [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ 2(2) + 3(1) \][/tex]
Calculate each term:
[tex]\[ 4 + 3 \][/tex]
So, [tex]\(2a + 3b = 7\)[/tex] when [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
3. Multiply the results from Step 1 and Step 2:
We have:
[tex]\[ (4a^2 - 6ab + 9b^2)(2a + 3b) = (13)(7) \][/tex]
Calculate the product:
[tex]\[ 13 \times 7 = 91 \][/tex]
So, the value of the expression [tex]\((4a^2 - 6ab + 9b^2)(2a + 3b)\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex] is [tex]\(91\)[/tex].
In summary:
- [tex]\(4a^2 - 6ab + 9b^2 = 13\)[/tex]
- [tex]\(2a + 3b = 7\)[/tex]
- The final result is [tex]\(91\)[/tex].
Given the expression [tex]\((4a^2 - 6ab + 9b^2)(2a + 3b)\)[/tex] with [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex]:
1. Evaluate the polynomial inside the parentheses [tex]\((4a^2 - 6ab + 9b^2)\)[/tex]:
[tex]\[ 4a^2 - 6ab + 9b^2 \][/tex]
Substituting [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ 4(2)^2 - 6(2)(1) + 9(1)^2 \][/tex]
Calculate each term:
[tex]\[ 4(4) - 6(2) + 9(1) \][/tex]
[tex]\[ 16 - 12 + 9 \][/tex]
[tex]\[ 16 - 12 = 4 \][/tex]
[tex]\[ 4 + 9 = 13 \][/tex]
So, [tex]\(4a^2 - 6ab + 9b^2 = 13\)[/tex] when [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
2. Evaluate the linear term [tex]\((2a + 3b)\)[/tex]:
[tex]\[ 2a + 3b \][/tex]
Substituting [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ 2(2) + 3(1) \][/tex]
Calculate each term:
[tex]\[ 4 + 3 \][/tex]
So, [tex]\(2a + 3b = 7\)[/tex] when [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
3. Multiply the results from Step 1 and Step 2:
We have:
[tex]\[ (4a^2 - 6ab + 9b^2)(2a + 3b) = (13)(7) \][/tex]
Calculate the product:
[tex]\[ 13 \times 7 = 91 \][/tex]
So, the value of the expression [tex]\((4a^2 - 6ab + 9b^2)(2a + 3b)\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = 1\)[/tex] is [tex]\(91\)[/tex].
In summary:
- [tex]\(4a^2 - 6ab + 9b^2 = 13\)[/tex]
- [tex]\(2a + 3b = 7\)[/tex]
- The final result is [tex]\(91\)[/tex].