What are the solutions of [tex]$x^2 - 4 = 0$[/tex]?

A. [tex]$x = -4$[/tex] or [tex][tex]$x = 4$[/tex][/tex]
B. [tex]$x = -2$[/tex] or [tex]$x = 2$[/tex]
C. [tex][tex]$x = 2$[/tex][/tex]
D. [tex]$x = 4$[/tex]



Answer :

To solve the equation [tex]\(x^2 - 4 = 0\)[/tex], follow these steps:

1. Isolate the term involving [tex]\(x\)[/tex]: Add 4 to both sides of the equation to get rid of the constant term on the left side.

[tex]\[ x^2 - 4 + 4 = 0 + 4 \][/tex]

Simplifies to:

[tex]\[ x^2 = 4 \][/tex]

2. Solve for [tex]\(x\)[/tex]: To find the value of [tex]\(x\)[/tex], take the square root of both sides of the equation. Remember that taking the square root of a number gives two solutions, one positive and one negative.

[tex]\[ x = \pm\sqrt{4} \][/tex]

3. Simplify the square root: The square root of 4 is 2.

[tex]\[ x = \pm 2 \][/tex]

Therefore, the solutions to the equation [tex]\(x^2 - 4 = 0\)[/tex] are:

[tex]\[ x = 2 \quad \text{or} \quad x = -2 \][/tex]

Given the choices:
- [tex]\(x = -4\)[/tex] or [tex]\(x = 4\)[/tex]
- [tex]\(x = -2\)[/tex] or [tex]\(x = 2\)[/tex]
- [tex]\(x = 2\)[/tex]
- [tex]\(x = 4\)[/tex]

The correct solution is [tex]\(x = -2\)[/tex] or [tex]\(x = 2\)[/tex].