If the length, width, and height of the rectangular-shaped glasses (in terms of inches) can be represented by [tex]4x + 3y[/tex], [tex]2x - y[/tex], and [tex]5[/tex] respectively, find the polynomial expression that represents the volume of each glass.

Write your answer in descending order.

Please use the palette below to enter your answer.



Answer :

To find the volume of the rectangular shaped glass, we need to use the formula for the volume of a rectangular prism, which is given by:

[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]

Given:
- Length [tex]\((L)\)[/tex] = [tex]\(4x + 3y\)[/tex]
- Width [tex]\((W)\)[/tex] = [tex]\(2x - y\)[/tex]
- Height [tex]\((H)\)[/tex] = 5

The volume [tex]\(V\)[/tex] can be calculated by substituting these values into the formula:

[tex]\[ V = (4x + 3y) \times (2x - y) \times 5 \][/tex]

First, let's multiply the length and width expressions:

[tex]\[ (4x + 3y)(2x - y) \][/tex]

To expand this, we use the distributive property (FOIL method):

[tex]\[ = 4x \cdot 2x + 4x \cdot (-y) + 3y \cdot 2x + 3y \cdot (-y) \][/tex]

[tex]\[ = 8x^2 - 4xy + 6xy - 3y^2 \][/tex]

Combine like terms:

[tex]\[ = 8x^2 + 2xy - 3y^2 \][/tex]

Next, we multiply this result by the height:

[tex]\[ V = (8x^2 + 2xy - 3y^2) \times 5 \][/tex]

Distribute the 5:

[tex]\[ V = 5 \cdot 8x^2 + 5 \cdot 2xy - 5 \cdot 3y^2 \][/tex]

Simplify each term:

[tex]\[ V = 40x^2 + 10xy - 15y^2 \][/tex]

Therefore, the polynomial expression that represents the volume of each glass is:

[tex]\[ \boxed{40x^2 + 10xy - 15y^2} \][/tex]