Answer :

To solve the system of equations:

1. [tex]\(-2x - \frac{2y}{4} = 12\)[/tex]
2. [tex]\(\frac{x}{5} - \frac{y}{3} = 5\)[/tex]

We'll start by simplifying the equations.

### Simplifying the First Equation:
The first equation is:
[tex]\[ -2x - \frac{2y}{4} = 12 \][/tex]
Simplify [tex]\(\frac{2y}{4}\)[/tex] to [tex]\(\frac{y}{2}\)[/tex]:
[tex]\[ -2x - \frac{y}{2} = 12 \][/tex]
To eliminate the fraction, multiply the entire equation by 2:
[tex]\[ -4x - y = 24 \quad \Rightarrow \quad 4x + y = -24 \quad \text{(Equation 3)} \][/tex]

### Simplifying the Second Equation:
The second equation is:
[tex]\[ \frac{x}{5} - \frac{y}{3} = 5 \][/tex]
To eliminate the fractions, multiply the entire equation by 15 (which is the least common multiple of 5 and 3):
[tex]\[ 15 \left(\frac{x}{5}\right) - 15 \left(\frac{y}{3}\right) = 15 \times 5 \\ 3x - 5y = 75 \quad \text{(Equation 4)} \][/tex]

Now, we have the simplified system of equations:
1. [tex]\(4x + y = -24\)[/tex]
2. [tex]\(3x - 5y = 75\)[/tex]

### Solving the System of Equations:
We can use the method of substitution or elimination. Here, we'll use elimination.

Step 1: Align the equations:
[tex]\[ 4x + y = -24 \quad \text{(Equation 3)} \][/tex]
[tex]\[ 3x - 5y = 75 \quad \text{(Equation 4)} \][/tex]

Step 2: Make the coefficients of y in both equations equal by multiplying the first equation by 5:
[tex]\[ 5(4x + y) = 5(-24) \\ 20x + 5y = -120 \quad \text{(Equation 5)} \][/tex]

Step 3: Add Equation 5 and Equation 4 to eliminate y:
[tex]\[ (20x + 5y) + (3x - 5y) = -120 + 75 \\ 20x + 3x + 5y - 5y = -120 + 75 \\ 23x = -45 \\ x = \frac{-45}{23} \\ x = -\frac{45}{23} \][/tex]

Step 4: Substitute [tex]\(x\)[/tex] back into Equation 3 to find [tex]\(y\)[/tex]:
[tex]\[ 4 \left( -\frac{45}{23} \right) + y = -24 \\ -\frac{180}{23} + y = -24 \][/tex]

First, rewrite [tex]\(-24\)[/tex] as a fraction:
[tex]\[ -24 = -\frac{552}{23} \][/tex]

So:
[tex]\[ -\frac{180}{23} + y = -\frac{552}{23} \\ y = -\frac{552}{23} + \frac{180}{23} \\ y = -\frac{552 - 180}{23} \\ y = -\frac{372}{23} \][/tex]

Thus:
[tex]\[ y = -\frac{372}{23} \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ x = -\frac{45}{23}, \quad y = -\frac{372}{23} \][/tex]