Find the midpoint, [tex]\( M \)[/tex], of [tex]\( \overline{AB} \)[/tex].

[tex]\( A = (2, 5) \)[/tex] and [tex]\( B = (-6, -3) \)[/tex]

[tex]\[
\begin{aligned}
M & = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \\
M & = \left( \frac{2 + (-6)}{2}, \frac{5 + (-3)}{2} \right) \\
M & = \left( \frac{-4}{2}, \frac{2}{2} \right) \\
M & = (-2, 1)
\end{aligned}
\][/tex]



Answer :

To find the midpoint [tex]\( M \)[/tex] of the line segment [tex]\( \overline{AB} \)[/tex] with endpoints [tex]\( A = (2, 5) \)[/tex] and [tex]\( B = (-6, -3) \)[/tex], we can use the midpoint formula:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

where [tex]\((x_1, y_1) \)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] respectively.

### Step-by-Step Solution:

1. Identify the coordinates:

For point [tex]\( A \)[/tex]:
[tex]\[ x_1 = 2, \quad y_1 = 5 \][/tex]

For point [tex]\( B \)[/tex]:
[tex]\[ x_2 = -6, \quad y_2 = -3 \][/tex]

2. Plug the coordinates into the midpoint formula for the x-coordinate:

[tex]\[ \frac{x_1 + x_2}{2} = \frac{2 + (-6)}{2} = \frac{2 - 6}{2} = \frac{-4}{2} = -2.0 \][/tex]

3. Plug the coordinates into the midpoint formula for the y-coordinate:

[tex]\[ \frac{y_1 + y_2}{2} = \frac{5 + (-3)}{2} = \frac{5 - 3}{2} = \frac{2}{2} = 1.0 \][/tex]

### Putting it together:

Therefore, the midpoint [tex]\( M \)[/tex] of [tex]\( \overline{AB} \)[/tex] is:

[tex]\[ M = (-2.0, 1.0) \][/tex]

Thus, the coordinates of the midpoint [tex]\( M \)[/tex] are:

[tex]\( M = (-2.0, 1.0) \)[/tex]