Answer :

To solve the equation [tex]\( \log(y+8) + \log(114) = \log(1160) \)[/tex] using logarithmic properties, follow these steps:

1. Combine the Logarithms:
Using the property of logarithms that states [tex]\( \log(a) + \log(b) = \log(a \cdot b) \)[/tex], we can combine the two logarithms on the left-hand side of the equation:

[tex]\[ \log(y+8) + \log(114) = \log((y+8) \cdot 114) \][/tex]

2. Rewrite the Equation:
Substitute this into the original equation to get:

[tex]\[ \log((y+8) \cdot 114) = \log(1160) \][/tex]

3. Drop the Logarithms:
Since the logarithms on both sides of the equation are equal, their arguments must also be equal. Thus, we can equate the arguments:

[tex]\[ 114(y+8) = 1160 \][/tex]

4. Solve for [tex]\( y \)[/tex]:
To isolate [tex]\( y \)[/tex], first divide both sides of the equation by 114:

[tex]\[ y+8 = \frac{1160}{114} \][/tex]

5. Simplify the Division:
Calculate the value of [tex]\(\frac{1160}{114}\)[/tex]:

[tex]\[ y + 8 = 10.175438596491228 \][/tex]

6. Isolate [tex]\( y \)[/tex]:
Subtract 8 from both sides of the equation to solve for [tex]\( y \)[/tex]:

[tex]\[ y = 10.175438596491228 - 8 \][/tex]

7. Calculate the Value:
Perform the subtraction:

[tex]\[ y = 2.1754385964912277 \][/tex]

Thus, the solution to the equation [tex]\( \log(y+8) + \log(114) = \log(1160) \)[/tex] is [tex]\( y = 2.1754385964912277 \)[/tex]. Additionally, when combined [tex]\( y+8 \)[/tex] equals [tex]\( 10.175438596491228 \)[/tex].