Which equation is the inverse of [tex]$2(x-2)^2=8(7+y)$[/tex]?

A. [tex]-2(x-2)^2=-8(7+y)[/tex]
B. [tex]y=\frac{1}{4} x^2-x-6[/tex]
C. [tex]y=-2 \pm \sqrt{28+4 x}[/tex]
D. [tex]y=2 \pm \sqrt{28+4 x}[/tex]



Answer :

To find the inverse of the given equation [tex]\( 2(x-2)^2 = 8(7+y) \)[/tex], we need to isolate [tex]\( y \)[/tex] and express it in terms of [tex]\( x \)[/tex].

Let's start solving the given equation step-by-step:

1. Given Equation:
[tex]\[ 2(x-2)^2 = 8(7 + y) \][/tex]

2. Divide both sides by 8 to simplify:
[tex]\[ \frac{2(x-2)^2}{8} = 7 + y \][/tex]
Simplifies to:
[tex]\[ \frac{(x-2)^2}{4} = 7 + y \][/tex]

3. Subtract 7 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ \frac{(x-2)^2}{4} - 7 = y \][/tex]

4. Simplify the expression:
[tex]\[ y = \frac{(x-2)^2}{4} - 7 \][/tex]

Now let's further expand and simplify the expression:

- Expand [tex]\( (x-2)^2 \)[/tex]:
[tex]\[ (x-2)^2 = x^2 - 4x + 4 \][/tex]

- Substitute back into the equation:
[tex]\[ y = \frac{x^2 - 4x + 4}{4} - 7 \][/tex]

- Distribute [tex]\( \frac{1}{4} \)[/tex] across the terms:
[tex]\[ y = \frac{x^2}{4} - x + 1 - 7 \][/tex]

- Combine like terms:
[tex]\[ y = \frac{x^2}{4} - x - 6 \][/tex]

Therefore, the inverse equation is:
[tex]\[ y = \frac{1}{4} x^2 - x - 6 \][/tex]

Among the given options, the inverse equation that matches our derived expression is:

[tex]\[ y = \frac{1}{4} x^2 - x - 6 \][/tex]