What is the sum of the polynomials?

[tex]\[ \left(8x^2 - 9y^2 - 4x\right) + \left(x^2 - 3y^2 - 7x\right) \][/tex]

A. [tex]\( 7x^2 - 6y^2 + 3x \)[/tex]
B. [tex]\( 9x^2 - 6y^2 + 3x \)[/tex]
C. [tex]\( 9x^2 - 12y^2 + 3x \)[/tex]
D. [tex]\( 9x^2 - 12y^2 - 11x \)[/tex]



Answer :

To find the sum of the given polynomials, let's add the like terms step by step.

Given polynomials:
[tex]\[ \left(8 x^2-9 y^2-4 x\right) \\ \left(x^2-3 y^2-7 x\right) \][/tex]

First, let's add the [tex]\(x^2\)[/tex] terms:
[tex]\[ 8 x^2 + x^2 = 9 x^2 \][/tex]

Next, let's add the [tex]\(y^2\)[/tex] terms:
[tex]\[ -9 y^2 + (-3 y^2) = -9 y^2 - 3 y^2 = -12 y^2 \][/tex]

Finally, let's add the [tex]\(x\)[/tex] terms:
[tex]\[ -4 x + (-7 x) = -4 x - 7 x = -11 x \][/tex]

Combining these results, we get:
[tex]\[ 9 x^2 - 12 y^2 - 11 x \][/tex]

Therefore, the sum of the polynomials [tex]\((8 x^2-9 y^2-4 x) + (x^2-3 y^2-7 x)\)[/tex] is:
[tex]\[ 9 x^2 - 12 y^2 - 11 x \][/tex]

So, the correct answer is:
[tex]\[ 9 x^2 - 12 y^2 - 11 x \][/tex]