In the frustum of a cone, the bottom diameter is thrice the top diameter.

(a) If the height of the frustum is 12 cm, calculate the height of the whole cone.

(b) Given that the volume of the whole cone is [tex]$39,600 \, \text{cm}^3$[/tex], find, correct to four significant figures, the radius. [Take [tex]\pi=\frac{22}{7}[/tex]]



Answer :

Certainly! Let's work through the given problem step by step:

### Part (a): Calculating the Height of the Whole Cone

1. Given Data:
- Height of the frustrum, [tex]\( h_{\text{frustrum}} = 12 \)[/tex] cm
- Bottom diameter = 3 * Top diameter

2. Derive the Radii:
- Let the top diameter be [tex]\( d_t \)[/tex]. Therefore, the bottom diameter is [tex]\( 3 \cdot d_t \)[/tex].
- Top radius, [tex]\( r_t = \frac{d_t}{2} \)[/tex].
- Bottom radius, [tex]\( r_b = \frac{3 \cdot d_t}{2} \)[/tex].

Since the top diameter is given as 1 (arbitrary unit for calculations):
- [tex]\( r_t = \frac{1}{2} \)[/tex] units
- [tex]\( r_b = \frac{3}{2} \)[/tex] units

3. Using Similar Triangles To Find Heights:
- Height of the whole cone includes the height of the frustrum and the height of the remaining (small) cone from the top to the top of the frustrum.
- Let the height of the whole cone be [tex]\( H \)[/tex] and the height of the small cone be [tex]\( h_{\text{small}} \)[/tex].

Using the similarity of triangles:
[tex]\[ \frac{h_{\text{small}}}{r_t} = \frac{H}{r_b} \][/tex]

Solving for [tex]\( H \)[/tex]:
[tex]\[ h_{\text{small}} = H - h_{\text{frustrum}} \][/tex]
[tex]\[ \frac{H - h_{\text{frustrum}}}{r_t} = \frac{H}{r_b} \][/tex]
[tex]\[ \frac{H - 12}{\frac{1}{2}} = \frac{H}{\frac{3}{2}} \][/tex]
[tex]\[ 2(H - 12) = \frac{2H}{3} \][/tex]
[tex]\[ 6(H - 12) = 2H \][/tex]
[tex]\[ 6H - 72 = 2H \][/tex]
[tex]\[ 4H = 72 \][/tex]
[tex]\[ H = 18 \text{ cm} \][/tex]

So, the height of the whole cone is [tex]\( 18 \)[/tex] cm.

### Part (b): Finding the Radius with the Given Volume

1. Given Data:
- Volume of the whole cone, [tex]\( V = 39,600 \)[/tex] cm[tex]\(^3\)[/tex]
- Height of the whole cone, [tex]\( H = 18 \)[/tex] cm
- [tex]\(\pi = \frac{22}{7}\)[/tex]

2. Volume Formula for a Cone:
[tex]\[ V = \frac{1}{3} \pi r^2 H \][/tex]

3. Solve For Radius [tex]\( r \)[/tex]:
[tex]\[ 39,600 = \frac{1}{3} \cdot \frac{22}{7} \cdot r^2 \cdot 18 \][/tex]
[tex]\[ 39,600 = \frac{22}{7} \cdot 6 \cdot r^2 \][/tex]
[tex]\[ 39,600 = \frac{132}{7} \cdot r^2 \][/tex]
[tex]\[ 39,600 \cdot 7 = 132 \cdot r^2 \][/tex]
[tex]\[ 277,200 = 132 \cdot r^2 \][/tex]
[tex]\[ r^2 = \frac{277,200}{132} \][/tex]
[tex]\[ r^2 = 2,100 \][/tex]
[tex]\[ r = \sqrt{2,100} \][/tex]
[tex]\[ r \approx 12.8058 \text{ cm} \][/tex]

So, the radius of the base of the whole cone is approximately [tex]\( 12.8058 \)[/tex] cm when rounded to four significant figures.