Answer :
Sure, let's determine which quadrilaterals have the given properties and fill in the table accordingly.
[tex]\[ \begin{tabular}{|c|c|} \hline \textbf{Opposite sides are congruent.} & \textbf{Diagonals are congruent.} \\ \hline rectangle, square, parallelogram, rhombus & rectangle, square \\ \hline \textbf{Diagonals are perpendicular.} & \textbf{Diagonals bisect opposite interior angles.} \\ \hline kite, square, rhombus & square, rhombus \\ \hline \begin{tabular}{l} \textbf{Exactly one pair of opposite angles are} \\ \textbf{congruent.} \end{tabular} & \begin{tabular}{l} \textbf{Consecutive interior angles are} \\ \textbf{supplementary.} \end{tabular} \\ \hline kite & rectangle, parallelogram, trapezoid \\ \hline \end{tabular} \][/tex]
This is the completed table based on the properties of the quadrilaterals listed.
[tex]\[ \begin{tabular}{|c|c|} \hline \textbf{Opposite sides are congruent.} & \textbf{Diagonals are congruent.} \\ \hline rectangle, square, parallelogram, rhombus & rectangle, square \\ \hline \textbf{Diagonals are perpendicular.} & \textbf{Diagonals bisect opposite interior angles.} \\ \hline kite, square, rhombus & square, rhombus \\ \hline \begin{tabular}{l} \textbf{Exactly one pair of opposite angles are} \\ \textbf{congruent.} \end{tabular} & \begin{tabular}{l} \textbf{Consecutive interior angles are} \\ \textbf{supplementary.} \end{tabular} \\ \hline kite & rectangle, parallelogram, trapezoid \\ \hline \end{tabular} \][/tex]
This is the completed table based on the properties of the quadrilaterals listed.