Drag each name to the correct location on the table. Each name can be used more than once, but not all names will be used.

Determine which quadrilaterals have the properties given in the table.

rectangle
kite
square
parallelogram
trapezoid
rhombus

\begin{tabular}{|c|c|}
\hline
Opposite sides are congruent. & Diagonals are congruent. \\
\hline
\begin{tabular}{l}
\end{tabular} & \begin{tabular}{l}
\end{tabular} \\
\hline
Diagonals are perpendicular. & Diagonals bisect opposite interior angles. \\
\hline
\begin{tabular}{l}
\end{tabular} & \begin{tabular}{l}
\end{tabular} \\
\hline
\begin{tabular}{l}
Exactly one pair of opposite angles are \\
congruent.
\end{tabular} & \begin{tabular}{l}
Consecutive interior angles are \\
supplementary.
\end{tabular} \\
\hline
& \\
\hline
\end{tabular}



Answer :

Sure, let's determine which quadrilaterals have the given properties and fill in the table accordingly.

[tex]\[ \begin{tabular}{|c|c|} \hline \textbf{Opposite sides are congruent.} & \textbf{Diagonals are congruent.} \\ \hline rectangle, square, parallelogram, rhombus & rectangle, square \\ \hline \textbf{Diagonals are perpendicular.} & \textbf{Diagonals bisect opposite interior angles.} \\ \hline kite, square, rhombus & square, rhombus \\ \hline \begin{tabular}{l} \textbf{Exactly one pair of opposite angles are} \\ \textbf{congruent.} \end{tabular} & \begin{tabular}{l} \textbf{Consecutive interior angles are} \\ \textbf{supplementary.} \end{tabular} \\ \hline kite & rectangle, parallelogram, trapezoid \\ \hline \end{tabular} \][/tex]

This is the completed table based on the properties of the quadrilaterals listed.