Sure, let's determine which quadrilaterals have the given properties and fill in the table accordingly.
[tex]\[
\begin{tabular}{|c|c|}
\hline
\textbf{Opposite sides are congruent.} & \textbf{Diagonals are congruent.} \\
\hline
rectangle, square, parallelogram, rhombus & rectangle, square \\
\hline
\textbf{Diagonals are perpendicular.} & \textbf{Diagonals bisect opposite interior angles.} \\
\hline
kite, square, rhombus & square, rhombus \\
\hline
\begin{tabular}{l}
\textbf{Exactly one pair of opposite angles are} \\
\textbf{congruent.}
\end{tabular} & \begin{tabular}{l}
\textbf{Consecutive interior angles are} \\
\textbf{supplementary.}
\end{tabular} \\
\hline
kite & rectangle, parallelogram, trapezoid \\
\hline
\end{tabular}
\][/tex]
This is the completed table based on the properties of the quadrilaterals listed.