Consider circle [tex]\( T \)[/tex] with radius 24 in. and [tex]\( \theta = \frac{5 \pi}{6} \)[/tex].

What is the length of the minor arc [tex]\( SV \)[/tex]?

A. [tex]\( 20 \pi \)[/tex] in.
B. [tex]\( 28 \pi \)[/tex] in.
C. [tex]\( 40 \pi \)[/tex] in.
D. [tex]\( 63 \pi \)[/tex] in.



Answer :

To find the length of the minor arc [tex]\( SV \)[/tex] in a circle with radius [tex]\( r = 24 \)[/tex] inches and central angle [tex]\( \theta = \frac{5 \pi}{6} \)[/tex] radians, we can use the formula for the arc length:

[tex]\[ S = r \cdot \theta \][/tex]

Where:
- [tex]\( r \)[/tex] is the radius of the circle.
- [tex]\( \theta \)[/tex] is the central angle in radians.

Given:
- [tex]\( r = 24 \)[/tex] inches
- [tex]\( \theta = \frac{5 \pi}{6} \)[/tex]

First, substitute the given values into the arc length formula:

[tex]\[ S = 24 \cdot \frac{5 \pi}{6} \][/tex]

Next, perform the multiplication:

[tex]\[ S = 24 \cdot \frac{5 \pi}{6} \][/tex]

[tex]\[ S = 24 \cdot \frac{5 \pi}{6} = 24 \cdot \frac{5 \pi}{6} = 24 \cdot \frac{5}{6} \cdot \pi \][/tex]

[tex]\[ S = (24 \cdot \frac{5}{6}) \cdot \pi = (24 \cdot \frac{5}{6}) \cdot \pi = (24 \cdot \frac{5}{6}) \cdot \pi = (24 \cdot \frac{5}{6}) \cdot \pi = 24 \cdot \frac{5}{6} \][/tex]

[tex]\[ S = 24 \cdot \frac{5}{6} = \frac{120}{6} = 20 \][/tex]

[tex]\[ S = 20 \pi \][/tex]

Thus, the length of the minor arc [tex]\( SV \)[/tex] is [tex]\( 20 \pi \)[/tex] inches.