Simplify the expression using only positive exponents. Evaluate exponents where appropriate.

Type your answer in the box.

[tex]\[
\left(\frac{2 x^{-3}}{5 w^2}\right)^{-3} =
\][/tex]

[tex]\(\square\)[/tex]



Answer :

To simplify the given expression [tex]\(\left(\frac{2 x^{-3}}{5 w^2}\right)^{-3}\)[/tex] using only positive exponents, follow these steps:

### Step-by-Step Solution:

1. Rewrite the Expression Inside the Parentheses:
[tex]\[ \frac{2 x^{-3}}{5 w^2} \][/tex]
This is already in a form that's manageable.

2. Apply the Negative Exponent to the Entire Fraction:
[tex]\[ \left(\frac{2 x^{-3}}{5 w^2}\right)^{-3} \][/tex]
Recall that [tex]\((a/b)^{-n} = (b/a)^n\)[/tex]. Apply this property:
[tex]\[ \left(\frac{2 x^{-3}}{5 w^2}\right)^{-3} = \left(\frac{5 w^2}{2 x^{-3}}\right)^{3} \][/tex]

3. Simplify the Fraction Inside the Parentheses:
[tex]\[ \frac{5 w^2}{2 x^{-3}} \][/tex]
Recall that [tex]\(x^{-3} = \frac{1}{x^3}\)[/tex], so rewrite it:
[tex]\[ \frac{5 w^2}{2 \cdot \frac{1}{x^3}} = \frac{5 w^2 \cdot x^3}{2} \][/tex]
Which simplifies to:
[tex]\[ \frac{5 w^2 x^3}{2} \][/tex]

4. Raise the Simplified Fraction to the Power of 3:
Now raise the simplified fraction to the power of 3:
[tex]\[ \left(\frac{5 w^2 x^3}{2}\right)^3 \][/tex]
Apply the power rule [tex]\(\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\)[/tex]:
[tex]\[ \frac{(5 w^2 x^3)^3}{2^3} \][/tex]

5. Simplify the Numerator and Denominator Separately:
- For the numerator:
[tex]\[ (5 w^2 x^3)^3 = 5^3 (w^2)^3 (x^3)^3 = 125 w^6 x^9 \][/tex]
- For the denominator:
[tex]\[ 2^3 = 8 \][/tex]

6. Combine the Results:
[tex]\[ \frac{125 w^6 x^9}{8} \][/tex]

### Final Answer:
[tex]\[ \boxed{\frac{125 w^6 x^9}{8}} \][/tex]